Skip to main content
Log in

Airborne interactions between undamaged plants of different cultivars affect insect herbivores and natural enemies

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

This study investigated the effects of airborne interaction between different barley cultivars on the behaviour of bird cherry-oat aphid Rhopalosiphum padi, the ladybird Coccinella septempunctata and the parasitoid Aphidius colemani. In certain cultivar combinations, exposure of one cultivar to air passed over a different cultivar caused barley to have reduced aphid acceptance and increased attraction of ladybirds and parasitoids. Parasitoids attacked aphids that had developed on plants under exposure more often than those from unexposed plants, leading to a higher parasitisation rate. Ladybirds, but not parasitoids, were more attracted to combined odours from certain barley cultivars than either cultivar alone. The results show that airborne interactions between undamaged plants can affect higher trophic levels, and that odour differences between different genotypes of the same plant species may be sufficient to affect natural enemy behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andow DA (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586

    Article  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A et al (2006) Volatile signaling in plant–plant interactions: talking trees in the genomics era. Science 311:812–815

    Article  CAS  PubMed  Google Scholar 

  • Banks JE (1999) Differential response of two agroecosystem predators, Pterostichus manarius (Coleoptera: Carabidae) and Coccinella septempunctata (Coleptera: Coccinellidae), to habitat-composition and fragmentation-scale manipulations. Can Entomol 131:645–657

    Google Scholar 

  • Bi H, Zeng R, Su L et al (2007) Rice allelopathy induced by methyl jasmonate and methyl salicylate. J Chem Ecol 33:1089–1103

    Article  CAS  PubMed  Google Scholar 

  • Cadet P, Berry SD, Leslie GW et al (2007) Management of nematodes and a stalk borer by increasing within-field sugarcane cultivar diversity. Plant Pathol 56:526–535

    Article  Google Scholar 

  • Degen T, Dillmann C, Marion-Poll F et al (2004) High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol 135:1928–1938

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, van Poecke RMP, de Boer JG (2003) Inducible indirect defence of plants: from mechanisms to ecological functions. Basic Appl Ecol 4:27–42

    Article  CAS  Google Scholar 

  • Elliott NC, Kieckhefer RW, Michels GJ Jr et al (2002) Predator abundance in alfalfa fields in relation to aphids, within-field vegetation, and landscape matrix. Environ Entomol 31:253–260

    Article  Google Scholar 

  • Elzen GW, Williams HJ, Vinson SB (1986) Wind tunnel flight responses by hymenopterous parasitoid Campoletis sonorensis to cotton cultivars and lines. Entomol Exp Appl 42:285–289

    Article  Google Scholar 

  • Glinwood RT, Pettersson J, Ninkovic V et al (2003) Change in acceptability of barley plants to aphids after exposure to allelochemicals from couch-grass (Elytrigia repens). J Chem Ecol 29:259–272

    Article  Google Scholar 

  • Glinwood RT, Ninkovic V, Ahmed E et al (2004) Barley exposed to aerial allelopathy from thistles (Cirsium spp.) becomes less acceptable to aphids. Ecol Entomol 29:188–195

    Article  Google Scholar 

  • Glinwood RT, Gradin T, Karpinska B et al (2007) Aphid acceptance of barley exposed to volatile phytochemicals differs between plants exposed in daylight and darkness. Plant Signal Behav 2:205–210

    Google Scholar 

  • Karl T, Guenther A, Turnipseed A et al (2008) Chemical sensing of plant stress at the ecosystem scale. Biogeosciences 5:1287–1294

    Article  CAS  Google Scholar 

  • Liu S-S, Morton R, Hughes R (1984) Oviposition preferences of a hymenopterous parasitoid for certain instars of its aphid host. Entomol Exp Appl 35:249–254

    Article  Google Scholar 

  • Loughrin JH, Manukian A, Heath RR et al (1995) Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. J Chem Ecol 21:1217–1227

    Article  CAS  Google Scholar 

  • Morrison LW, King JR (2004) Host location behavior in a parasitoid of imported fire ants. J Insect Behav 17:367–383

    Article  Google Scholar 

  • Mundt CC (2002) Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Phytopathol 40:381–410

    Article  CAS  PubMed  Google Scholar 

  • Ninkovic V (2003) Volatile communication between barley plants affects biomass allocation. J Exp Bot 54:1931–1939

    Google Scholar 

  • Ninkovic V, Pettersson J (2003) Searching behaviour of seven-spotted ladybird, Coccinella septempunctata—effects of plant-plant odour interaction. Oikos 100:65–70

    Article  Google Scholar 

  • Ninkovic V, Al Albassi A, Pettersson J (2001) The influence of aphid-induced plants volatiles on ladybird beetle searching. Biol Control 21:191–195

    Article  Google Scholar 

  • Ninkovic V, Olsson U, Pettersson J (2002) Mixing barley cultivars affects aphid host plant acceptance in field experiments. Entomol Exp Appl 102:177–182

    Article  Google Scholar 

  • Ninkovic V, Ahmed E, Glinwood R et al (2003) Effects of two types of semiochemical on population development of the bird cherry oat aphid Rhopalosiphum padi in a barley crop. Agric For Entomol 5:1–7

  • Ninkovic V, Glinwood R, Pettersson J (2006) Communication between undamaged plants by volatiles: the role of allelobiosis. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants: neuronal aspects of plant life. Springer, Berlin, pp 421–434

    Google Scholar 

  • Nissinen A, Ibrahim M, Kainulainen P et al (2005) Influence of carrot psyllid (Trioza apicalis) feeding or exogenous limonene or methyl jasmonate treatment on composition of carrot (Daucus carota) leaf essential oil and headspace volatiles. J Agric Food Chem 53:8631–8638

    Article  CAS  PubMed  Google Scholar 

  • Pettersson J, Ninkovic V, Ahmed E (1999) Volatiles from different barley cultivars affect aphid acceptance of neighbouring plants. Acta Agric Scand B 49:152–157

    CAS  Google Scholar 

  • Pettersson J, Ninkovic V, Glinwood R, Birkett MA, Pickett JA (2005) Foraging in a complex environment—semiochemicals support searching behaviour of the seven spot ladybird. Eur J Entomol 102:365–370

    Google Scholar 

  • Pettersson J, Ninkovic V, Glinwood R et al (2008) Chemical stimuli supporting foraging behaviour of Coccinella septempunctata L (Coleoptera: Coccinellidae): volatiles and allelobiosis—a minireview. Appl Entomol Zool 43:315–321

    Article  Google Scholar 

  • Power AG (1991) Virus spread and vector dynamics in genetically diverse plant populations. Ecology 72:232–241

    Article  Google Scholar 

  • Prado E, Tjallingii WF (1997) Effects of previous plant infestation on sieve element acceptance by two aphids. Entomol Exp Appl 82:189–200

    Google Scholar 

  • Rapusas HR, Bottrell DG, Coll M (1996) Intraspecific variation in chemical attraction of rice to insect predators. Biol Control 6:394–400

    Article  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, New York

  • Root RB (1973) Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oeracea). Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Russell EP (1989) Enemies hypothesis: a review of the effect of vegetational diversity on insect predators and parasitoids. Environ Entomol 18:590–599

    Google Scholar 

  • Scutareanu P, Bruin J, Posthumus MA et al (2003) Constitutive and herbivore-induced volatiles in pear, alder and hawthorn trees. Chemoecology 13:63–74

    CAS  Google Scholar 

  • Starý P (1975) Aphidius colemani Viereck: its taxonomy, distribution and host range (Hymenoptera, Aphidiidae). Acta Entomol Bohemoslov 72:156–163

    Google Scholar 

  • Takabayashi J, Dicke M, Posthumus MA (1991) Variation in composition of predator-attracting allelochemicals emitted by herbivore-infested plants: relative influence of plant and herbivore. Chemoecology 2:1–6

    Article  CAS  Google Scholar 

  • Uvah III, Coaker TH (1984) Effect of mixed cropping on some insect pests of carrots and onions. Entomol Exp Appl 36:159–167

    Article  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritophic context. Ann Rev Entomol 37:141–172

    Google Scholar 

  • Vinson SB (1976) Host selection by insect parasitoids. Annu Rev Entomol 21:109–134

    Article  Google Scholar 

  • Wang Y, Kays SJ (2002) Sweetpotato volatile chemistry in relation to sweetpotato weevil (Cylas formicarius) behavior. J Am Soc Hortic Sci 127:656–662

    CAS  Google Scholar 

  • Weston LA, Duke SO (2003) Weed and crop allelopathy. Crit Rev Plant Sci 22:367–389

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Mistra through the PlantComMistra program and by the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Glinwood.

Additional information

Handling Editor: Heikki Hokkanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glinwood, R., Ahmed, E., Qvarfordt, E. et al. Airborne interactions between undamaged plants of different cultivars affect insect herbivores and natural enemies. Arthropod-Plant Interactions 3, 215–224 (2009). https://doi.org/10.1007/s11829-009-9072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-009-9072-9

Keywords

Navigation