Skip to main content
Log in

Physiological responses of resistant and susceptible barley, Hordeum vulgare to the Russian wheat aphid, Diurpahis noxia (Mordvilko)

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Knowledge of the physiological responses of barley, Hordeum vulgare L., to the Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae) is critical to understanding the defense response of barley to aphid injury and identifying resistance mechanisms. This study documented the impact of D. noxia feeding on resistant (‘Sidney’) and susceptible (‘Otis’) barley through chlorophyll fluorescence measurements, chlorophyll content, and carbon assimilation (A–Ci) curves recorded at 1, 3, 6, 10, and 13 days after aphid introduction. All chlorophyll fluorescence parameters evaluated were similar between aphid-infested and control plants for both cultivars. A–Ci curves showed that D. noxia feeding negatively impacts the photosynthetic capacity in both cultivars, but this effect was greater in the susceptible plants. From the A–Ci curves, it is apparent that compensation occurs in resistant barley by day 10, but by the conclusion of the experiment, aphid populations reached levels that overwhelmed the resistant barley seedlings. Differences observed in carbon assimilation curves between control and infested plants show that D. noxia feeding impacts the dark reaction, specifically rubisco activity and RuBP regeneration. It is likely that declines in the photochemical efficiency and chlorophyll content of the plants may be a secondary effect and not the primary trigger of declines in host plant function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Burd JD, Burton RL (1992) Characterization of plant damage caused by Russian wheat aphid. J Econ Entomol 85:2017–2022

    Google Scholar 

  • Burd JD, Elliott NC (1996) Changes in chlorophyll a fluorescence induction kinetics in cereals infested with Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol 89:1332–1337

    Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345. doi:10.1146/annurev.pp.33.060182.001533

    Article  CAS  Google Scholar 

  • Franzen LD, Gutsche AR, Heng-Moss TM et al (2007) Physiological and biochemical responses of resistant and susceptible wheat to injury by the Russian wheat aphid, Diuraphis noxia (Mordvilko). J Econ Entomol 100:1692–1703. doi:10.1603/0022-0493(2007)100[1692:PABROR]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  • Haile FJ, Higley LG, Ni X et al (1999) Physiological and growth tolerance in wheat to Russian wheat aphid (Homoptera: Aphididae) injury. Environ Entomol 28:787–794

    Google Scholar 

  • Heng-Moss TM, Ni X, Macedo T et al (2003) Comparison of chlorophyll and carotenoid concentrations amoung Russian wheat aphid (Homoptera: Aphididae)-infested wheat isolines. J Econ Entomol 96:475–481

    Article  CAS  PubMed  Google Scholar 

  • Macedo TB, Higley LG, Ni X et al (2003) Light activation of Russian wheat aphid-elicited physiological responses in susceptible wheat. J Econ Entomol 96:194–201

    CAS  PubMed  Google Scholar 

  • Macedo TB, Peterson RKD, Weaver DK et al (2009) Impact of Diuraphis noxia and Rhopalosiphum padi (Hemiptera: Aphididae) on primary physiology of four near-isogenic wheat lines. J Econ Entomol 102:412–421. doi:10.1603/029.102.0154

    Article  PubMed  Google Scholar 

  • Malkin R, Niyogi K (2000) Photosynthesis. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 568–628

  • Miller H, Porter DR, Burd JD et al (1994) Physiological effects of Russian wheat aphid (Homoptera: Aphididae) on resistant and susceptible barley. J Econ Entomol 87:493–499

    Google Scholar 

  • Mornhinweg DW, Porter DR, Webster JA (1995) Registration of STARS-9301B barley germplasm resistant to Russian wheat aphid. Crop Sci 35:602

    Google Scholar 

  • Mornhinweg DW, Porter DR, Webster JA (1999) Registration of STARS-9577B Russian wheat aphid resistant barley germplasm. Crop Sci 39:882

    Article  Google Scholar 

  • Mornhinweg DW, Obert DE, Wesenberg D, Erickson CA, Porter DR (2006) Registration of seven winter feed barley germplasm lines resistant to Russian wheat aphid. Crop Sci 46:1826–1827

    Article  Google Scholar 

  • Mornhinweg DW, Bregitzer PP, Porter DR (2007a) Registration of nineteen spring six-rowed barley germplasm lines resistant to Russian wheat aphid. J Plant Regist 1:137–138. doi:10.3198/jpr2006.12.0815crg

    Article  Google Scholar 

  • Mornhinweg DW, Bregitzer PP, Porter DR (2007b) Registration of seventeen spring two-rowed barley germplasm lines resistant to Russian wheat aphid. J Plant Regist 1:135–136. doi:10.3198/jpr2006.12.0814crg

    Article  Google Scholar 

  • Mornhinweg DW, Bregitzer PP, Porter DR (2008) Registration of seven spring two-rowed barley germplasm lines resistant to Russian wheat aphid. J Plant Regist 2:230–234. doi:10.3198/jpr2007.12.0716crg

    Article  Google Scholar 

  • Ni X, Quisenberry SS, Heng-Moss T et al (2002) Dynamic change in photosynthetic pigments and chlorophyll degradation elicited by cereal aphid feeding. Entomol Exp Appl 105:43–53. doi:10.1023/A:1021754831841

    Article  CAS  Google Scholar 

  • Pons L (2004) Germplasm from previous study may thwart new aphid biotype. Agricultural Research, USDA-ARS, April 2004, pp 16–18

  • Rafi MM, Zemetra RS, Quisenberry SS (1996) Interaction between Russian wheat aphid (Homoptera: Aphididae) and resistant and susceptible genotypes of wheat. J Econ Entomol 89:239–246

    Google Scholar 

  • Rafi M, Zemetra M, Quisenberry SS (1997) Feeding damage of Russian wheat aphid on resistant and susceptible wheat genotypes. Cereal Res Commun 25:63–68

    CAS  Google Scholar 

  • Ryan JD, Johnson RC, Eikenbary RD, Dorschner KW (1987) Drought/greebug interactions: photosynthesis of greenbug resistant and susceptible wheat. Crop Sci 27:283–288

    Google Scholar 

  • SAS Institute (2002) PROC user’s manual, version 9.1. SAS Institute, Cary, NC

    Google Scholar 

  • Webster JA, Kenkel P (1999) Benefits of managing small-grain pests with plant resistance. In: Wiseman BR, Webster JA (eds) Proceedings, Thomas Say Publications in entomology. Entomological Society of America, Lanham, MD, pp 87–114

Download references

Acknowledgements

We gratefully acknowledge Blair Siegfried for reviewing this manuscript. We also thank Gary Hein and Frank Peairs for plant material. This research was supported in part by the University of Nebraska Agriculture Experiment Station Projects 17-078 and 17-080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiffany M. Heng-Moss.

Additional information

Handling Editor: Robert Glinwood

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutsche, A.R., Heng-Moss, T.M., Higley, L.G. et al. Physiological responses of resistant and susceptible barley, Hordeum vulgare to the Russian wheat aphid, Diurpahis noxia (Mordvilko). Arthropod-Plant Interactions 3, 233–240 (2009). https://doi.org/10.1007/s11829-009-9067-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-009-9067-6

Keywords

Navigation