Skip to main content
Log in

Regulation der Atmung im Schlaf

Control of breathing during sleep

  • Schwerpunkt
  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Zusammenfassung

Die Atmung ist ein Teil eines Transportsystems im Dienst des Gasaustauschs. Rhythmische Atembewegungen werden von einem neuronalen Netzwerk in der Medulla oblongata gesteuert, das auf tonische Afferenzen angewiesen ist. Diese bilden teils geschlossene Regelkreise zur Homöostase der Blutgase und des pH-Werts und sind zum Teil nicht rückgekoppelte „Wachheitsantriebe“. Orexinerge Neurone des Hypothalamus scheinen hier eine wichtige Rolle zu spielen. Mit dem Einschlafen reduzieren sich diese tonischen Afferenzen, die Empfindlichkeit für Sauerstoffmangel und Hyperkapnie nimmt ab, die Arousalschwellen steigen an. Schlaf demaskiert die Apnoeschwelle. Fällt der arterielle Kohlendioxidpartialdruck infolge kurzer Hyperpnoe unter diesen Wert, kommt es zu einem Atemstillstand. Eine unruhige Einschlafphase und häufige Schlafstadienwechsel destabilisieren das Atmungsmuster. Der Tonusverlust der Muskulatur insbesondere im REM-Schlaf betrifft auch die Atemwege und die Interkostalmuskulatur. Folglich nimmt der Atemwegswiderstand zu, das Zwerchfell muss zur Kompensation erhöhte Arbeit leisten. Dennoch weichen beim Gesunden die Blutgase im Schlaf nur wenig von den Werten im Wachsein ab.

Abstract

Breathing is part of a transport system that serves gas exchange of the body. Rhythmic breathing movements are controlled by the neuronal respiratory network in the medulla oblongata, which is dependent on tonic afferents. These are partly closed feedback loops to guarantee the homeostasis of blood gases and acid–base balance, and partly non-feedback stimuli as the so-called “wakefulness drives.” Orexinergic neurons in the hypothalamus seem to play an important role in the tonic drive of respiration during wakefulness. Sleep onset markedly reduces tonic afferents, decreases the sensitivity to hypoxia and hypercapnia, and elevates arousal thresholds. Sleep unmasks the apnea threshold. If the arterial carbon dioxide partial pressure drops below this threshold due to short hyperpneic episodes, the respiratory rhythm arrests. Restless sleep with frequent changes in sleep states destabilizes the breathing pattern. The muscle atonia especially during REM sleep also affects the upper airway muscles and the intercostal muscles. Consequently, there is an increase in airway resistance. The diaphragm has to compensate these challenges by increased work. Nevertheless, in healthy subjects the blood gases only slightly change from wakefulness to sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886

    PubMed  CAS  Google Scholar 

  2. Badr MS, Skatrud JB, Dempsey JA (1992) Determinants of poststimulus potentiation in humans during NREM sleep. J Appl Physiol 73:1958–1971

    PubMed  CAS  Google Scholar 

  3. Baekey DM, Feng P, Decker MJ, Strohl KP (2009) Breathing and sleep: measurement methods, genetic influences, and developmental impacts. ILAR J 50:248–261

    PubMed  CAS  Google Scholar 

  4. Berry RB, Gleeson K (1997) Respiratory arousal from sleep: mechanisms and significance. Sleep 20:654–675

    PubMed  CAS  Google Scholar 

  5. Berthon-Jones M, Sullivan CE (1984) Ventilation and arousal responses to hypercapnia in normal sleeping humans. J Appl Physiol 57:59–67

    PubMed  CAS  Google Scholar 

  6. Berthon-Jones M, Sullivan CE (1982) Ventilatory and arousal responses to hypoxia in sleeping humans. Am Rev Respir Dis 125:632–639

    PubMed  CAS  Google Scholar 

  7. Buchanan GF, Richerson GB (2010) Central serotonin neurons are required for arousal to CO2. Proc Natl Acad Sci U S A 107:16354–16359

    Article  PubMed  CAS  Google Scholar 

  8. Bülow K, Ingvar DH (1961) Respiration and state of wakefulness in normals, studied by spirography, capnography and EEG: A preliminary report. Acta Physiol Scand 51:230–238

    Article  Google Scholar 

  9. Geus EJ de, Posthuma D, Kupper N et al (2005) A whole-genome scan for 24-hour respiration rate: a major locus at 10q26 influences respiration during sleep. Am J Hum Genet 76:100–111

    Article  PubMed  Google Scholar 

  10. Dempsey JA, Smith CA, Harms CA et al (1996) Sleep-induced breathing instability. University of Wisconsin-Madison Sleep and respiration Research Group. Sleep 19:236–247

    PubMed  CAS  Google Scholar 

  11. Dempsey JA, Smith CA, Przybylowski T et al (2004) The ventilatory responsiveness to CO2 below eupnoea as a determinant of ventilatory stability in sleep. J Physiol 560:1–11

    Article  PubMed  CAS  Google Scholar 

  12. Douglas NJ, White DP, Weil JV et al (1982) Hypercapnic ventilatory response in sleeping adults. Am Rev Respir Dis 126:758–762

    PubMed  CAS  Google Scholar 

  13. Douglas NJ, White DP, Weil JV et al (1982) Hypoxic ventilatory response decreases during sleep in normal men. Am Rev Respir Dis 125:286–289

    PubMed  CAS  Google Scholar 

  14. Fogel RB, Malhotra A, Shea SA et al (2000) Reduced genioglossal activity with upper airway anesthesia in awake patients with OSA. J Appl Physiol 88:1346–1354

    Article  PubMed  CAS  Google Scholar 

  15. Fouke JM, Teeter JP, Strohl KP (1986) Pressure-volume behavior of the upper airway. J Appl Physiol 61:912–918

    PubMed  CAS  Google Scholar 

  16. Foutz AS, Boudinot E, Morin-Surun MP et al (1987) Excitability of ‚silent‘ respiratory neurons during sleep-waking states: an iontophoretic study in undrugged chronic cats. Brain Res 404:10–20

    Article  PubMed  CAS  Google Scholar 

  17. Garcia AJ 3rd, Zanella S, Koch H et al (2011) Networks within networks The neuronal control of breathing. Prog Brain Res 188:31–50

    Article  PubMed  Google Scholar 

  18. Gariepy JF, Missaghi K, Dubuc R (2010) The interactions between locomotion and respiration. Prog Brain Res 187:173–188

    Article  PubMed  Google Scholar 

  19. Gleeson K, Zwillich CW, White DP (1990) The influence of increasing ventilatory effort on arousal from sleep. Am Rev Respir Dis 142:295–300

    PubMed  CAS  Google Scholar 

  20. Gothe B, Cherniack NS, Williams L (1986) Effect of hypoxia on ventilatory and arousal responses to CO2 during NREM sleep with and without flurazepam in young adults. Sleep 9:24–37

    PubMed  CAS  Google Scholar 

  21. Hauri P, Van de Castle RL (1973) Psychophysiological parallels in dreams. Psychosom Med 35:297–308

    PubMed  CAS  Google Scholar 

  22. Hilaire G, Voituron N, Menuet C et al (2010) The role of serotonin in respiratory function and dysfunction. Respir Physiol Neurobiol 174:76–88

    Article  PubMed  CAS  Google Scholar 

  23. Hobson JA, Goldfrank F, Snyder F (1965) Respiration and mental activity in sleep. J Psychiatr Res 3:79–90

    Article  PubMed  CAS  Google Scholar 

  24. Hoffman MS, Mitchell GS (2011) Spinal 5-HT7 receptor activation induces long-lasting phrenic motor facilitation. J Physiol

  25. Hugelin A, Cohen MI (1963) The reticular activating system and respiratory regulation in the cat. Ann N Y Acad Sci 109:586–603

    Article  PubMed  CAS  Google Scholar 

  26. Iber C, Simon P, Skatrud JB et al (1995) The Breuer-Hering reflex in humans. Effects of pulmonary denervation and hypocapnia. Am J Respir Crit Care Med 152:217–224

    PubMed  CAS  Google Scholar 

  27. Issa FG, Sullivan CE (1983) Arousal and breathing responses to airway occlusion in healthy sleeping adults. J Appl Physiol 55:1113–1119

    PubMed  CAS  Google Scholar 

  28. Khoo MC, Berry RB (1996) Modeling the interaction between arousal and chemical drive in sleep-disordered breathing. Sleep 19:S167–S169

    PubMed  CAS  Google Scholar 

  29. Khoo MC, Kronauer RE, Strohl KP, Slutsky AS (1982) Factors inducing periodic breathing in humans: a general model. J Appl Physiol 53:644–659

    PubMed  CAS  Google Scholar 

  30. Kuwaki T (2008) Orexinergic modulation of breathing across vigilance states. Respir Physiol Neurobiol 164:204–212

    Article  PubMed  CAS  Google Scholar 

  31. Kuwaki T (2010) Hypothalamic modulation of breathing. Adv Exp Med Biol 669:243–247

    Article  PubMed  Google Scholar 

  32. Leevers AM, Simon PM, Dempsey JA (1994) Apnea after normocapnic mechanical ventilation during NREM sleep. J Appl Physiol 77:2079–2085

    PubMed  CAS  Google Scholar 

  33. Leevers AM, Simon PM, Xi L, Dempsey JA (1993) Apnoea following normocapnic mechanical ventilation in awake mammals: a demonstration of control system inertia. J Physiol 472:749–768

    PubMed  CAS  Google Scholar 

  34. Malhotra A, Pillar G, Fogel RB et al (2000) Genioglossal but not palatal muscle activity relates closely to pharyngeal pressure. Am J Respir Crit Care Med 162:1058–1062

    PubMed  CAS  Google Scholar 

  35. Martin RJ, Dreshaj IA, Miller MJ, Haxhiu MA (1994) Hypoglossal and phrenic responses to central respiratory inhibition in piglets. Respir Physiol Neurobiol 97:93–103

    CAS  Google Scholar 

  36. Miller DB, O’Callaghan JP (2006) The pharmacology of wakefulness. Metabolism 55:S13–S19

    Article  PubMed  CAS  Google Scholar 

  37. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    PubMed  CAS  Google Scholar 

  38. Orem J, Lydic R (1978) Upper airway function during sleep and wakefulness: experimental studies on normal and anesthetized cats. Sleep 1:49–68

    PubMed  CAS  Google Scholar 

  39. Orem J, Kubin L (2005) Respiratory physiology: Central neuronal control. In: Kryger MH, Roth T, Dement WC (Hrsg) Principles and practice of sleep medicine, 4. Aufl. Elsevier/Saunders, Philadelphia/PA, S 213–223

  40. Orem J, Lovering AT, Dunin-Barkowski W, Vidruk EH (2000) Endogenous excitatory drive to the respiratory system in rapid eye movement sleep in cats. J Physiol 527 Pt 2:365–376

    Google Scholar 

  41. Orem J, Norris P, Lydic R (1978) Laryngeal abductor activity during sleep. Chest 73:300–301

    PubMed  CAS  Google Scholar 

  42. Pan LG, Forster HV, Martino P et al (1998) Important role of carotid afferents in control of breathing. J Appl Physiol 85:1299–1306

    PubMed  CAS  Google Scholar 

  43. Parisi RA, Edelman NH, Santiago TV (1992) Central respiratory carbon dioxide chemosensitivity does not decrease during sleep. Am Rev Respir Dis 145:832–836

    PubMed  CAS  Google Scholar 

  44. Peyron C, Tighe DK, Pol AN van den et al (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    PubMed  CAS  Google Scholar 

  45. Pierce R, White D, Malhotra A et al (2007) Upper airway collapsibility, dilator muscle activation and resistance in sleep apnoea. Eur Respir J 30:345–353

    Article  PubMed  CAS  Google Scholar 

  46. Pillar G, Malhotra A, Fogel RB et al (2000) Upper airway muscle responsiveness to rising PCO2 during NREM sleep. J Appl Physiol 89:1275–1282

    PubMed  CAS  Google Scholar 

  47. Raschke F, Möller KH (1989)Untersuchungen zur Tagesrhythmik der Chemosensitivität und deren Beitrag zu nächtlichen Atmungsregulationsstörungen. Pneumologie 43(Suppl 1):568–571

    PubMed  Google Scholar 

  48. Richter DW (1996) Neural regulation of respiration: Rhythmogenesis and afferent control. In: Greger R, Windhorst U (Hrsg) Comprehensive human physiology. From cellular mechanisms to integration, vol 2. Springer, Berlin, S 2079–2095

  49. Richter DW, Ballanyi K, Schwarzacher S (1992) Mechanisms of respiratory rhythm generation. Curr Opin Neurobiol 2:788–793

    Article  PubMed  CAS  Google Scholar 

  50. Rühle KH RF, Hein H, Ficker JH et al (2001) Arousals: Aktueller Stand, klinische Bedeutung und offene Fragen. Somnologie 5:24–45

    Article  Google Scholar 

  51. Schäfer T (1998) Variability of vigilance and ventilation: studies on the control of respiration during sleep. Respir Physiol Neurobiol 114:37–48

    Google Scholar 

  52. Schäfer T, Schläfke ME (1998) Respiratory changes associated with rapid eye movements in normo-and hypercapnia during sleep. J Appl Physiol 85:2213–2219

    PubMed  Google Scholar 

  53. Schäfer T, Schläfke ME (2001) Variability of CO2-sensitivity during sleep. Adv Exp Med Biol 499:459–463

    Article  PubMed  Google Scholar 

  54. Schläfke ME (1981) Central chemosensitivity: a respiratory drive. Rev Physiol Biochem Pharmacol 90:171–244

    Article  Google Scholar 

  55. Schläfke ME, Schäfer C, Schäfer T (1999) Das Undine-Syndrom als kongenitales zentrales Hypoventilationssyndrom (CCHS). Somnologie 3:128–133

    Article  Google Scholar 

  56. See WR, Schlaefke ME, Loeschcke HH (1983) Role of chemical afferents in the maintenance of rhythmic respiratory movements. J Appl Physiol 54:453–459

    PubMed  CAS  Google Scholar 

  57. Skatrud JB, Dempsey JA (1983) Interaction of sleep state and chemical stimuli in sustaining rhythmic ventilation. J Appl Physiol 55:813–822

    PubMed  CAS  Google Scholar 

  58. Spengler CM, Czeisler CA, Shea SA (2000) An endogenous circadian rhythm of respiratory control in humans. J Physiol 526 Pt 3:683–694

    Google Scholar 

  59. Sullivan CE, Kozar LF, Murphy E, Phillipson EA (1979) Arousal, ventilatory, and airway responses to bronchopulmonary stimulation in sleeping dogs. J Appl Physiol 47:17–25

    PubMed  CAS  Google Scholar 

  60. Sullivan CE, Issa FG (1980) Pathophysiological mechanisms in obstructive sleep apnea. Sleep 3:235–246

    PubMed  CAS  Google Scholar 

  61. Sullivan CE, Murphy E, Kozar LF, Phillipson EA (1978) Waking and ventilatory responses to laryngeal stimulation in sleeping dogs. J Appl Physiol 45:681–689

    PubMed  CAS  Google Scholar 

  62. Szczyrba MR (2006) Energieumsatz, Ventilation und pCO2 bei ruhigem Wachsein im Vergleich zur Einschlafphase. Inaugural-Dissertation zur Erlangung des Doktorgrads der Medizin einer Hohen Medizinischen Fakultät der Ruhr-Universität Bochum, Bochum

  63. Tamisier R, Gilmartin GS, Launois SH et al (2009) A new model of chronic intermittent hypoxia in humans: effect on ventilation, sleep, and blood pressure. J Appl Physiol 107:17–24

    Article  PubMed  CAS  Google Scholar 

  64. Tangel DJ, Mezzanotte WS, White DP (1991) Influence of sleep on tensor palatini EMG and upper airway resistance in normal men. J Appl Physiol 70:2574–2581

    PubMed  CAS  Google Scholar 

  65. Tangel DJ, Mezzanotte WS, White DP (1995) Influences of NREM sleep on activity of palatoglossus and levator palatini muscles in normal men. J Appl Physiol 78:689–695

    PubMed  CAS  Google Scholar 

  66. White DP, Douglas NJ, Pickett CK et al (1983) Sleep deprivation and the control of ventilation. Am Rev Respir Dis 128:984–986

    PubMed  CAS  Google Scholar 

  67. White DP, Douglas NJ, Pickett CK et al (1982) Hypoxic ventilatory response during sleep in normal premenopausal women. Am Rev Respir Dis 126:530–533

    PubMed  CAS  Google Scholar 

  68. White DP, Weil JV, Zwillich CW (1985) Metabolic rate and breathing during sleep. J Appl Physiol 59:384–391

    PubMed  CAS  Google Scholar 

  69. Williams RH, Burdakov D (2008) Hypothalamic orexins/hypocretins as regulators of breathing. Expert Rev Mol Med 10:e28

    Article  PubMed  Google Scholar 

  70. Worsnop C, Kay A, Pierce R et al (1998) Activity of respiratory pump and upper airway muscles during sleep onset. J Appl Physiol 85:908–920

    PubMed  CAS  Google Scholar 

  71. Xie A, Rutherford R, Rankin F et al (1995) Hypocapnia and increased ventilatory responsiveness in patients with idiopathic central sleep apnea. Am J Respir Crit Care Med 152:1950–1955

    PubMed  CAS  Google Scholar 

  72. Xu F, Uh J, Brier MR et al (2011) The influence of carbon dioxide on brain activity and metabolism in conscious humans. J Cereb Blood Flow Metab 31:58–67

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schäfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, T., Schläfke, M. Regulation der Atmung im Schlaf. Somnologie 15, 84–91 (2011). https://doi.org/10.1007/s11818-011-0515-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-011-0515-z

Schlüsselwörter

Keywords

Navigation