Skip to main content
Log in

The C-terminal region of OsWRKY30 is sufficient to confer enhanced resistance to pathogen and activate the expression of defense-related genes

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

WRKY proteins are known to play major roles in defense signaling. We identified a pathogen-inducible and SA-inducible OsWRKY30. Our cDNA clone encodes the C-terminal region (CTR) of OsWRKY30. CTR-OsWRKY30 includes the C-terminal WRKY domain and nuclear localization sequence. CTR-OsWRKY30 was sufficient to bind W-box sequences (TTGACC/T). Over-expression of the CTR-OsWRKY30 resulted in enhanced resistance to pathogens in Arabidopsis and rice. Defense-related genes were constitutively expressed in transgenic Arabidopsis and rice over-expressing CTR-OsWRKY30. Based on promoter transient assays, CTR-OsWRKY30 is sufficient to activate OsPR10a promoter as much as full length OsWRKY30. Taken together, CTR-OsWRKY30 positively regulates defense signaling, thereby resulting in enhanced resistance to pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ET:

Ethylene

JA:

Jasmonic acid

Pcc :

Pectobacterium carotovora ssp. carotovora

SA:

Salicylic acid

Xcc :

Xanthomonas campestris pv. campestris

Xoo :

Xanthomonas oryzae pv. oryzae

References

  • Chen C, Chen Z (2000) Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol Biol 42:387–396

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706–716

    Article  PubMed  CAS  Google Scholar 

  • Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005) Over-expression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact 18:511–520

    Google Scholar 

  • Chujo T, Takai R, Akimoto-Tomiyama C, Ando S, Minami E, Nagamura Y, Kaku H, Shibuya N, Yasuda M, Nakashita H, Umemura K, Okada A, Okada K, Yamane H, Nojiri H (2007) Involvement of the elicitor-induced gene OsWRKY53 in the expression of defense-related genes in rice. Biochim Biophys Acta 1769:497–505

    Article  PubMed  CAS  Google Scholar 

  • Cong L, Chai TY, Zhang YX (2008) Characterization of the novel gene BjDRE1B encoding a DRE-binding transcription factor from Brassica juncea L. Biochem Biophys Res Commun 371:702–706

    Article  PubMed  CAS  Google Scholar 

  • Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA 99:2404–2409

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  PubMed  CAS  Google Scholar 

  • Dow JM, Crossman L, Findlay K, He YQ, Feng JY, Tang JL (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA 100:10995–11000

    Article  PubMed  CAS  Google Scholar 

  • Duan MR, Nan J, Liang YH, Mao P, Lu L, Li L, Wei C, Lai L, Li Y, Su XD (2007) DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Res 35:1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Eggermont K, Thomma BP, Penninckx IA, Mauch-Mani B, Vogelsang R, Cammue BP, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  Google Scholar 

  • Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10(2):71–78

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defense signaling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Felton GW, Korth KL (2000) Trade-offs between pathogen and herbivore resistance. Curr Opin Plant Biol 3:309–314

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Hta S, Komari Y, Kunashiro T (1994) Effective transformation of rice mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hwang SH, Lee IA, Yie SW, Hwang DJ (2008) Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227:1141–1150

    Article  PubMed  CAS  Google Scholar 

  • Hwang SH, Yie SW, Hwang DJ (2011) Heterologous expression of OsWRKY6 gene in Arabidopsis activates the expression of defense-related genes and enhances resistance to pathogens. Plant Sci 181:316–323

    Google Scholar 

  • Jiang B, He Y, Cen W, Wei H, Jiang G, Jiang W, Hang X, Feng J, Lu G, Tang D, Tang J (2008) The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res Microbiol 159:216–220

    Article  PubMed  CAS  Google Scholar 

  • Journot-cataline N, Somissich IE, Roby D, Kroi T (2006) The transcription factors WRKY11 andWRKY 17 ant as negative regulators of basal resistance in Arabidopsis thaliana. Plant cell 18:3289–3302

    Article  Google Scholar 

  • Kauffman HE, Reddy APK, Hsieh SPV, Merca SD (1973) An improved technique for evaluating resistance to rice varieties of Xanthomonas oryzae. Plant Dis Rep 57:537–541

    Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  PubMed  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  PubMed  CAS  Google Scholar 

  • Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491

    Article  PubMed  CAS  Google Scholar 

  • Liu XQ, Bai XQ, Qian Q, Wang XJ, Chen MS, Chu CC (2005) OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res 15:593–603

    Article  PubMed  CAS  Google Scholar 

  • Liu XQ, Bai XQ, Wang XJ, Chu CC (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 17

  • Maleck K, Levine A, Eulgem T, Morgan A, Jürg S, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–409

    Article  PubMed  CAS  Google Scholar 

  • Murray SL, Ingle RA, Petersen LN, Denby KJ (2007) Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY 53 and a protein with homology to a nematode resistance protein. Mol Plant Microbe Interact 20:1431–1438

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Bartley L, Chen X, Dardick C, Chern M, Ruan R, Canlas P, Ronald P (2008) OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol Plant 1(3):446–458

    Article  PubMed  CAS  Google Scholar 

  • Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and Jasmonate-dependent signaling. Mol Plant Microbe Interact 20:492–499

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthy R (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865–879

    Article  PubMed  CAS  Google Scholar 

  • Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    Article  PubMed  CAS  Google Scholar 

  • Ross CA, Liu Y, Shen QJ (2007) The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol 49:827–842

    Article  CAS  Google Scholar 

  • Ryu HS, Han M, Lee SK, Cho JI, Ryoo N, Heu S, Lee YH, Bhoo SH, Wang G, Hahn TR, Jeon JS (2006) A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep 25:836–847

    Article  PubMed  CAS  Google Scholar 

  • Shimono M, Sugano S, Nakayama AC, Jiang CJ, Ono K, Toki S, Takatsuji H (2007) Rice WRKY 45 plays a crucial role in benzothiadiazole-inducilde blast resistance. Plant cell 19:2064–2076

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Li X, He Y, Feng J, Chen B, Tang J (2005) The zinc uptake regulator zur is essential for the full virulence of Xanthomonas campestris pv. campestris. Mol Plant Microbe Interact 18(7):652–658

    Article  PubMed  CAS  Google Scholar 

  • Tao Z, Liu H, Qiu D, Zhou Y, Li X, Xu C, Wang S (2009) A pair of allelic WRKY genes play opposite roles in rice–bacterial interactions. Plant Physiol 151:936–948

    Article  PubMed  CAS  Google Scholar 

  • Turck F, Zhou A, Somssich IE (2004) Stimulus-dependent promoter-specific binding of transcription factor WRKY1 to its natice promoter and the defense-related gene PcPR1 in parslely. Plant cell 16:2573–2585

    Article  PubMed  CAS  Google Scholar 

  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  Google Scholar 

  • Ulker B, Shahid Mukhtar M, Somssich IE (2007) The WRKY 70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226:125–137

    Article  PubMed  Google Scholar 

  • Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Peng Y, Guo Z (2007) Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol 65:799–815

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Oamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7:1–13

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by two grants (PJ007850 and PJ008574) from Rural development administration to Dr. Duk-Ju Hwang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duk-Ju Hwang.

Additional information

H. Lee and Y.J. Ko equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11816_2012_252_MOESM1_ESM.ppt

Supplementary Fig. 1. Phylogenetic tree of OsWRKY30 with the other WRKY proteins. It is constructed by clustal W of Megalign program in DNA STAR package. C in OsWRKY53C, AtWRKY33C, OsWRKY30C, and AtWRKY25C stands for C-terminal WRKY domain. Distance in the tree corresponds to evolutionary distance. Locus identifiers of the genes from this article are as follows: At1g62300 (WRKY6), At1g18860 (WRKY61), At4g31800 (WRKY18), At2g25000 (WRKY60), At3g01970 (WRKY45), At5g64810 (WRKY51), At2g30250 (WRKY25), At4g24240 (WRKY7), At2g23320 (WRKY15), At4g31550 (WRKY11), At4g01250 (WRKY22), At4g23550 (WRKY29), At1g66560 (WRKY64), At3g56400 (WRKY70), OsWRKY53 (AK121190), OsWRKY30 (AK066518) (PPT 73 kb)

11816_2012_252_MOESM2_ESM.ppt

Supplemental Fig. 2. Alignment of OsWRKY30 with related WRKY proteins. Three Group I WRKY proteins were aligned by clustal W of Megalign in DNA STAR package. Identical amino acids are in pink box between them (PPT 180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Ko, Y.J., Cha, JY. et al. The C-terminal region of OsWRKY30 is sufficient to confer enhanced resistance to pathogen and activate the expression of defense-related genes. Plant Biotechnol Rep 7, 221–230 (2013). https://doi.org/10.1007/s11816-012-0252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-012-0252-1

Keywords

Navigation