Skip to main content

Advertisement

Log in

Biofortification of crops for reducing malnutrition

  • Review Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Micronutrient deficiencies affect approximately 3 billion people worldwide. Malnutrition hinders the development of human potential and social and economic development in developing countries. The World Health Organization (WHO) and the Consultative Group on International Agricultural Research (CGIAR) have made fighting micronutrient deficiencies, known as hidden hunger, a high priority. Deficiencies of the micronutrients, such as iron, zinc, and vitamin A, are the most devastating among the world’s poor. WHO emphasizes nutrient supplementation and food fortification to address the malnutrition. CGIAR has placed a greater emphasis on biofortification through the HarvestPlus challenge program, and improved micronutrient content of the staple crops (rice, wheat, maize, beans, cassava, pearl millet, and sweet potato) through breeding and biotechnological approaches. An excellent example of biotechnology application is the development of ‘golden rice’ with adequate levels of a provitamin A, β-carotene. The Africa Harvest and the BioCassava Plus programs, respectively, are developing sorghum and cassava with improved nutritional quality. Here, we summarize current strategies of crop biofortification and future prospects towards the development of biofortified crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baisakh N, Rehana S, Rai M, Oliva N, Tan J, Mackill DJ, Khush GS, Datta K, Datta SK (2006) Marker-free transgenic (MFT) near-isogenic introgression lines (NIILs) of ‘golden’ indica rice (cv. IR64) with accumulation of provitamin A in the endosperm tissue. Plant Biotechnol J 4:467–475

    Article  PubMed  CAS  Google Scholar 

  • Beebe S, Gonzalez AV, Rengifo J (2000) Research on trace minerals in common bean. Food Nutr Bull 21:387–391

    Google Scholar 

  • Beyer P (2010) Golden Rice and ‘Golden’ crops for human nutrition. Nat Biotechnol 27:478–481

    CAS  Google Scholar 

  • Black RE (2003) Zinc deficiency, infectious disease and mortality in the developing world. J Nutr 133:S1485–S1489

    Google Scholar 

  • Bouis HE, RD Graham, Welch RM (2000) The CGIAR micronutrient project: justification, history, objectives and summary of findings. In: Workshop on improving human nutrition through agriculture. The role of International Agricultural Research Centers. International Food policy Research Institute, Washington, DC, pp 374–381

  • Burkhardt PK, Beyer P, Wuenn J, Kloeti A, Armstrong GA, Schledz M, Von Lintig J, Potrykus I (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J 11:1071–1078

    Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc, agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Caulfield L, Richard S, Rivera J, Musgrove P, Black R (2005) Stunting, wasting, and micronutrient deficiency disorders. In: Disease control priorities in developing countries, 2nd edn. World Bank Oxford University Press, Washington, DC, pp 551–567

  • Chakraborty S, Chakraborty N, Datta A (2000) Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amranthus hypochondriacus. Proc Natl Acad Sci USA 97:3724–3729

    Article  PubMed  CAS  Google Scholar 

  • Datta K, Baisakh N, Oliva N, Torrizo L, Abrigo E, Tan J, Rai M, Rehana S, Al-Babili S, Beyer P, Potrykus I, Datta SK (2003) Bioengineered ‘golden’ indica rice cultivars with beta-carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotechnol J 1:81–90

    Article  PubMed  CAS  Google Scholar 

  • Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2:e350

    Article  PubMed  Google Scholar 

  • Douchkov D, Gryczka C, Stephan UW, Hell R, Baumlein H (2005) Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ 28:365–374

    Article  CAS  Google Scholar 

  • Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J Exp Bot 56:81–89

    PubMed  CAS  Google Scholar 

  • Falco SC, Guida T, Locke M, Mauvais J, Sanders C, Ward RT, Webber P (1995) Transgenic canola and soybean seeds with increased lysine. Biotechnology 13:577–582

    Article  PubMed  CAS  Google Scholar 

  • FAO (2009) The state of food insecurity in the world. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Gibbon BC, Larkins BA (2005) Molecular genetic approaches to developing quality protein maize. Trends Genet 21:227–233

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Galera S, Rojas E, Sudhakar D, Zhu C, Pelacho AM, Capell T, Christou P (2010) Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res 19:165–180

    Article  PubMed  Google Scholar 

  • Goto F, Yoshimura T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  PubMed  CAS  Google Scholar 

  • Greenwald P, McDonald SS (2001) The β-carotene story. Adv Exp Med Biol 492:219–231

    Article  PubMed  CAS  Google Scholar 

  • Gregorio GB, Senadhira D, Htut H, Graham RD (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:382–386

    Google Scholar 

  • Ha SH, Liang YS, Jung H, Ahn MJ, Suh SC, Kweon SJ, Kim DH, Kim YM, Kim JK (2010) Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol J 8:928–938

    Article  PubMed  CAS  Google Scholar 

  • Haas JD, Beard JL, Murray-Kolb LE, Del Mundo AM, Felix A, Gregorio GB (2005) Iron biofortified rice improves the iron stores of non anemic Filipino women. J Nutr 135:2823–2830

    PubMed  CAS  Google Scholar 

  • Hageniwana V (2000) Potential of orange-fleshed sweet potatoes in raising vitamin A intake in Africa. In: Workshop on improving human nutrition through agriculture: role of international agricultural research, vol 21, pp 414–418

  • HarvestPlus (2006) Biofortified sweet potato. Washington, DC. http://harvestplus.org

  • Hetzel BS (2000) Iodine and neuropsychological development. J Nutr 130:493S–495S

    PubMed  CAS  Google Scholar 

  • Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Bae H, Jeong J, Lee JY, Yang YY, Hwang I, Martinoia E, Lee Y (2003) Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol 133:589–596

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Jeon US, Lee SJ, Kim YK, Persson DP, Husted S, Schjørring JK, Kakei Y, Masuda H, Nishizawa NK, An G (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci USA 106:22014–22019

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Persson DP, Hansen TH, Husted S, Schjoerring JK, Kim YS, Jeon US, Kim YK, Kakei Y, Masuda H, Nishizawa NK, An G (2011) Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol J 9:865–873

    Article  PubMed  CAS  Google Scholar 

  • Low JW, Arimond M, Osman N, Cunguara B, Zano F, Tschirley D (2007) A food-based approach introducing orange-fleshed sweet potatoes increased vitamin A intake and serum retinol concentrations in young children in rural Mozambique. J Nutr 137:1320–1327

    PubMed  CAS  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and level of iron in rice grains. Theor Appl Genet 102:392–397

    Article  CAS  Google Scholar 

  • Ortiz-Monasterio I, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21:392–396

    Google Scholar 

  • Ortiz-Monasterio JI, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Pena RJ (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307

    Article  CAS  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Kramer U, Borg S, Schjorring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473

    Article  PubMed  CAS  Google Scholar 

  • Potrykus I (2001) Golden rice and beyond. Plant Physiol 125:1157–1161

    Article  PubMed  CAS  Google Scholar 

  • Pray C, Paarlberg R, Unnevehr L (2007) Patterns of political response to biofortified varieties of crops produced with different breeding techniques and agronomic traits. AgBioForum 10:135–143. http://www.agbioforum.org

    Google Scholar 

  • Ramaswamy B (2007) Biofortified crops and biotechnology: a political economy landscape for India. AgBioForum 10:170–177. http://www.agbioforum.org

    Google Scholar 

  • Rasmussen SK, Hatzack F (1998) Identification of two low-phytate barley (Hordeum vulgare L.) grain mutants by TLC and genetics analysis. Hereditas 129:107–112

    Article  CAS  Google Scholar 

  • Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquet C, Fellman J, Fregene M, Gruissem W, Mallowa S, Manary M, Maziya-Dixon B, Mbanaso A, Schachtman DP, Siritunga D, Taylor N, Vanderschuren H, Zhang P (2011) The BioCassava Plus program: biofortification of cassava for sub-Saharan Africa. Annu Rev Plant Biol 62:251–272

    Article  PubMed  CAS  Google Scholar 

  • Stein AJ (2010) Global impact of human mineral malnutrition. Plant Soil 335:133–154

    Article  CAS  Google Scholar 

  • Thakkar SK, Maziya-Dixon B, Dixon AG, Failla ML (2007) Beta-carotene micellarization during in vitro digestion and uptake by Caco-2 cells is directly proportional to beta-carotene content in different genotypes of cassava. J Nutr 137:2229–2233

    PubMed  CAS  Google Scholar 

  • WHO (1992) National strategies for overcoming micronutrient malnutrition. World Health Organization, Geneva

  • WHO (2009) Micronutrient deficiencies: iron deficiency anemia. World Health Organization, Geneva. http://www.who.int/nutrition/topics/idea

  • WHO (2011) Micronutrient deficiencies: vitamin A deficiency. World Health Organization, Geneva. http://www.who.int/nutrition/topics/vad/en/

  • Wirth J, Poletti S, Aeschlimann B, Yakandawala N, Drosse B, Osorio S, Tohge T, Fernie A, Günther D, Gruissem W, Sautter C (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7:631–644

    Article  PubMed  CAS  Google Scholar 

  • World Bank (2008) World development report 2008. Oxford University Press, New York

    Google Scholar 

  • Yan J, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang X, Skinner DJ, Fu Z, Mitchell S, Li Q, Fernandez MG, Zaharieva M, Babu R, Fu Y, Palacios N, Li J, Dellapenna D, Brutnell T, Buckler ES, Warburton ML, Rocheford T (2010) Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nat Genet 42:322–327

    Article  PubMed  CAS  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid free) rice endosperm. Science 287:303–305

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Shewry PR (2011) Recent developments in modifying crops and agronomic practice to improve human health. Food Policy 36:S94–S101

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the World Class University program (R33-2008-000-10168-0), the Korean Ministry of Education, Science and Technology, and from the Next-Generation BioGreen 21 Program (PJ008114022011 and PJ008156012011), Rural Development Administration of the Korean Ministry of Food, Agriculture, Forestry, and Fisheries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurdev S. Khush.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khush, G.S., Lee, S., Cho, JI. et al. Biofortification of crops for reducing malnutrition. Plant Biotechnol Rep 6, 195–202 (2012). https://doi.org/10.1007/s11816-012-0216-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-012-0216-5

Keywords

Navigation