Skip to main content

Advertisement

Log in

Recent applications of the liquid phase plasma process

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this paper, the principle and application of plasma are briefly described, and in particular, the principle and practical application for plasma generated in liquid are introduced. Also, the research results of water treatment, synthesis of metal nanoparticle, synthesis of visible light-responsive photocatalyst, synthesis of energy material, and hydrogen gas production, which were tested using liquid phase plasma, are introduced. Various water pollutants were treated and hydrogen gas was produced using the strong chemical oxidizing species and ultraviolet rays in the plasma field generated in the reactant aqueous solution during the liquid phase plasma (LPP) process. The effects of plasma discharge conditions, dissolved oxygen concentration, pH value, photocatalytic behavior, as well as the properties of organic solutions on the LPP reaction were investigated experimentally and reported. Based on these previous studies, metal nanoparticles were synthesized using hydrogen atom radicals as well as the numerous electrons in the plasma field generated during the LPP process. Additionally, these studies indicate that visible light-responsive photocatalysts can be obtained when metal nanoparticles are precipitated in TiO2. They also provide evidence that metal nanoparticles can be precipitated in various carbon materials for application as electrodes in secondary batteries and supercapacitors. Therefore, the LPP process has been successfully applied in various fields given that it can be easily and conveniently used, and presently it is being applied in several new fields and many possibilities for its future application are expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Baroch, V. Anita, N. Saito and O. Takai, J. Electrostat., 66, 294 (2008).

    Article  CAS  Google Scholar 

  2. J. Hieda, N. Saito and O. Takai, Surf. Coat. Tech., 202, 5343 (2008).

    Article  CAS  Google Scholar 

  3. N. Saito, J. H. Hieda and O. Takai, Thin Solid Films, 518, 912 (2009).

    Article  CAS  Google Scholar 

  4. P. Pootawang, N. Saito and O. Takai, Thin Solid Films, 519, 7030 (2011).

    Article  CAS  Google Scholar 

  5. M. Vijay, P. V. Ananthapadmanabhan and K. P. Sreekumar, Appl. Surf. Sci., 255, 9316 (2009).

    Article  CAS  Google Scholar 

  6. J. S. Clements, M. Sato and R. H. Davis, IEEE Trans. Ind. Appl., IA-23, 224 (1987).

    Article  CAS  Google Scholar 

  7. K. Yasukoka, T. Haehara, J. Katsuki, S. Katsuki, T. Namihira, T. Kaneko and R. Hatakeyama, J. Plasma Fusion Res., 84, 666 (2008).

    Google Scholar 

  8. K. Schoenbach, J. Kolb, S. Xiao, S. Katsuki, Y. Minamitani and R. Joshi, Plasma Sources Sci. Technol., 17, 024010 (2008).

    Article  Google Scholar 

  9. T. Namihira, S. Sakai, T. Yamaguchi, K. Yamamoto, C. Yamada, T. Kiyan, T. Sakugawa and S. Katsuki, IEEE Trans. Plasma Sci., 35, 614 (2007).

    Article  Google Scholar 

  10. T. Tsuji, T. Mizuki, S. Ozono and M. Tsuji, J. Photochem. Photobiol., A, 206, 134 (2009).

    Article  CAS  Google Scholar 

  11. R. Itatani, Appl. Phys. Express, 69, 971 (2000).

    CAS  Google Scholar 

  12. M. Laroussi, IEEE Trans. Plasma Sci., 24, 1188 (1996).

    Article  CAS  Google Scholar 

  13. J. S. Clements, M. Sato and R. H. Davis, IEEE Trans. Ind. Appl., IA-23, 224 (1987).

    Article  CAS  Google Scholar 

  14. J. C. Devins, S. J. Rzad and R. J. Schwabe, J. Appl. Phys., 52, 4531 (1981).

    Article  CAS  Google Scholar 

  15. K. Yasukoka, T. Haehara, J. Katsuki, S. Katsuki, T. Namihira, T. Kaneko and R. Hatakeyama, J. Plasma Fusion Res., 84, 666 (2008).

    Google Scholar 

  16. A. Hickling and M. D. Ingram, Trans. Faraday Soc., 60, 783 (1964).

    Article  CAS  Google Scholar 

  17. S. Horikoshi and N. Serpone, RSC Adv., 7, 47196 (2017).

    Article  CAS  Google Scholar 

  18. T. Tsuji, T. Mizuki, S. Ozono and M. Tsuji, J. Photochem. Photobiol., A, 206, 134 (2009).

    Article  CAS  Google Scholar 

  19. I. B. Gornushkin and U. Panne, Spectrochim. Acta, Part B, 65, 345 (2000).

    Article  Google Scholar 

  20. G. Saito and T. Akiyama, J. Nanomater., 2015, 1 (2015).

    Article  Google Scholar 

  21. G. Sathyanarayanan, M. Haapala, C. Dixon, A. R. Wheeler and T. M. Sikanen, Adv. Mater. Technol., 5: 2000451 (2020).

    Article  CAS  Google Scholar 

  22. N. Mariotti, M. Bonomo, L. Fagiolari, N. Barbero, C. Gerbaldi, F. Bella and C. Barolo, Green Chem., 22, 7168 (2020).

    Article  CAS  Google Scholar 

  23. A. Dokouzis, F. Bella, K. Theodosiou, C. Gerbaldi and G. Leftheriotis, Mater. Today Energy, 15, 100365 (2020).

    Article  Google Scholar 

  24. Z. Yang, Y. Luo, X. Gao and R. Wang, Chem. Electro. Chem., 7, 2599 (2020).

    CAS  Google Scholar 

  25. S. Galliano, F. Bella, M. Bonomo, G. Viscardi, C. Gerbaldi, G. Boschloo and C. Barolo, Nanomaterials, 10, 1585 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  26. M. Falco, C. Simari, C. Ferrara, J. R. Nair, G. Meligrana, F. Bella, I. Nicotera, P. Mustarelli, M. Winter and C. Gerbaldi, Langmuir, 35, 8210 (2019).

    CAS  PubMed  Google Scholar 

  27. B. R. Locke, M. Sato, P. Sunka, M. R. Hoffmann and J.-S. Chang, Ind. Eng. Chem. Res., 45, 882 (2006).

    Article  CAS  Google Scholar 

  28. J. Noack and A. Vogel, IEEE J. Quantum Electron., 35, 1156 (1999).

    Article  CAS  Google Scholar 

  29. S. Mukasa, S. Nomura and H. Toyota, Jpn. J. Appl. Phys., 46, 6015 (2007).

    Article  CAS  Google Scholar 

  30. T. Maehara, H. Toyota, M. Kuramoto, A. Iwamae, A. Tadokoro, S. Mukasa, H. Yamashita, A. Kawashima and S. Nomura, Jpn. J. Appl. Phys., 45, 8864 (2006).

    Article  CAS  Google Scholar 

  31. S. H. Sun and S.-C. Jung, Korean J. Chem. Eng., 33, 1075 (2016).

    Article  CAS  Google Scholar 

  32. S. C. Kim, Y. K. Park, B. H. Kim, K. H. An, H. Lee, S. J. Lee and S. C. Jung, J. Nanosci. Nanotechnol., 17, 2578 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. H. Lee, S. H. Park, S. J. Kim, Y. K. Park, B. J. Kim, K. H. An, S. J. Ki and S.-C. Jung, Int. J. Hydrogen Energy, 40, 754 (2015).

    Article  CAS  Google Scholar 

  34. S. J. Ki, Y.-K. Park, J.-S. Kim, W.-J. Lee, H. Lee and S.-C. Jung, Chem. Eng. J., 377, 120087 (2019).

    Article  CAS  Google Scholar 

  35. S.-C. Kim, Y.-K. Park, B. H. Kim, H. Kim, W.-J. Lee, H. Lee and S.-C. Jung, Korean J. Chem. Eng., 35, 750 (2018).

    Article  CAS  Google Scholar 

  36. S. J. Ki, K.-J. Jeon, Y.-K. Park, H. Park, S. Jeong, H. Lee and S.-C. Jung, J. Environ. Manag., 203, 880 (2017).

    Article  CAS  Google Scholar 

  37. H. Lee, I.-S. Park, H.-J. Bang, Y.-K. Park, E.-B. Cho, B.-J. Kim and S.-C. Jung, Appl. Surf. Sci., 481, 625 (2019).

    Article  CAS  Google Scholar 

  38. K.-H. Chung, H. Park, K.-J. Jeon, Y.-K. Park and S.-C. Jung, Catal. Today, 307, 131 (2018).

    Article  CAS  Google Scholar 

  39. K.-H. Chung, S. Jeong, H. Lee, S.-J. Kim, K.-J. Jeon, Y.-K. Park and S.-C. Jung, Int. J. Hydrogen Energy, 42, 24099 (2017).

    Article  CAS  Google Scholar 

  40. H. Lee, Y.-K. Park, J.-S. Kim, Y.-H. Park and S.-C. Jung, Environ. Res., 169, 256 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. H. Lee, Y.-K. Park, S.-J. Kim, B.-H. Kim and S.-C. Jung, Surf. Coat. Tech., 307, 1018 (2016).

    Article  CAS  Google Scholar 

  42. H. Lee, S. H. Park, C.-J. Cheong, S.-J. Kim, S.-G. Seo, Y.-K. Park and S.-C. Jung, Ozone-Sci. Eng., 36, 244 (2014).

    Article  CAS  Google Scholar 

  43. Š. Potocký, N. Saito and O. Takai, Thin Solid Films, 518, 918 (2009).

    Article  Google Scholar 

  44. J. K. Lung, J. C. Huang, D. C. Tien, C. Y. Liao, K. H. Tseng, T. T. Tsung, W. S. Kao, T. H. Tsai, C. S. Jwo, H. M. Lin and L. Stobinski, J. Alloys Compd., 434, 655 (2007).

    Article  Google Scholar 

  45. S. C. Kim, Y. K. Park, B. H. Kim, K. H. An, H. Lee, S. J. Lee and S. C. Jung, J. Nanosci. Nanotechnol., 17, 2578 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. S.-J. Lee, H. Lee, K.-J. Jeon, H. Park, Y.-K. Park and S.-C. Jung, Nanoscale Res. Lett., 11, 344 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Z. Xu, C. Shen, Y. Tian, X. Shi and H. J. Gao, Nanoscale, 2, 1027 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. G. Bharath, R. Madhu, S. M. Chen, V. Veeramani, D. Mangalaraja and N. Ponpandian, J. Mater. Chem. A, 3, 15529 (2015).

    Article  CAS  Google Scholar 

  49. F. Nensebaa, N. Patrito, Y. L. Page, P. L’Ecuyer and D. Wang, J. Mater. Chem., 14, 3378 (2014).

    Article  Google Scholar 

  50. L. Ma, C. Liu, J. Liao, T. Lua, W. Xing and J. Zhang, Electrochim. Acta, 54, 57274 (2009).

    Google Scholar 

  51. H. Lee, Y.-K. Park, S.-J. Kim, B.-H. Kim and S.-C. Jung, Surf. Coat. Tech., 307, 1018 (2016).

    Article  CAS  Google Scholar 

  52. S. J. Ki, K.-J. Jeon, Y.-K. Park, H. Park, S. Jeong, H. Lee and S.-C. Jung, J. Environ. Manage., 203, 880 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. B.-H. Kim, Y.-K. Park, K.-H. An, H. Lee and S.-C. Jung, Sci. Adv. Mater., 8, 1769 (2016).

    Article  CAS  Google Scholar 

  54. K.-H. Chung, I.-S. Park, H.-J. Bang, Y.-K. Park, S.-J. Kim, B.-J. Kim and S.-C. Jung, Sci. Total Environ., 676, 190 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. K.-H. Chung, S. Jeong, B.-J. Kim, J.-S. Kim, Y.-K. Park and S.-C. Jung, Int. J. Hydrogen Energy, 43, 5873 (2018).

    Article  CAS  Google Scholar 

  56. S. Jeong, K.-H. Chung, H. Lee, H. Park, K.-J. Jeon, Y.-K. Park and S.-C. Jung, ACS Sustainable Chem. Eng., 5, 3659 (2017).

    Article  CAS  Google Scholar 

  57. K.-H. Chung, B.-J. Kim, S.-J. Kim, Y.-K. Park and S.-C. Jung, Int. J. Hydrogen Energy, 45, 8595 (2018).

    Article  Google Scholar 

  58. I. Rahim, S. Nomura, S. Mukasa and H. Toyota, Appl. Therm. Eng., 90, 120 (2015).

    Article  CAS  Google Scholar 

  59. T. Sakugawa, N. Aoki, H. Akiyama, K. Ishibashi, M. Watanabe, A. Kouda and K. Suematsu, IEEE Trans. Plasma Sci., 42, 794 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Chul Jung.

Additional information

Conflict of Interest

The authors have no conflict of interest.

Sang-chul Jung is currently a full professor at Sunchon National University, Department of Environmental Engineering. He received a B.S. and M.S. in Chemical Engineering from Chonnam National University and a Ph.D. in Engineering from Kyushu University. From 1995 to 1997 he worked at LG Semicon. His research interests include development of energy/environmental materials, liquid phase plasma process, surface and interface treatment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SC., Park, YK. & Jung, SC. Recent applications of the liquid phase plasma process. Korean J. Chem. Eng. 38, 885–898 (2021). https://doi.org/10.1007/s11814-020-0739-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0739-3

Keywords

Navigation