Skip to main content
Log in

Effects of catalysts on structural and adsorptive properties of iron oxide-silica nanocomposites

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Iron oxide-silica nanocomposites were prepared by sol-gel method using ammonia (NH3), acetic acid (CH3COOH) and hydrochloric acid (HCl) catalysts to generate different pH values for the reaction conditions. As starting precursors, for the silica, respectively, for the iron oxide, tetraethylorthosilicate (TEOS) and iron-III-acetylacetonate were used. The physico-chemical characterization of the materials revealed that the sample obtained with HCl catalyst displays the largest surface area (300 m2/g), the most compact network structure, highest surface roughness, biggest crystallite size (14 nm), magnetization (7 emu/g) and superparamagnetic behavior. These materials were tested for adsorption of Cr6+ and Zn2+ from aqueous solution. Sample M-HCl presented the highest surface area and was further used for adsorption of metal ions. Kinetic, thermodynamic and equilibrium adsorption measurements studies were made for Cr6+ and Zn2+. To establish the material behavior from a thermodynamic point of view, temperature and contact time of adsorption process, activation energy, free energy, of standard enthalpy and entropy were calculated. The kinetic behavior was modelled by pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models and the adsorption characteristics were determined by modelling the experimental data with Langmuir, Freundlich and Sips isotherms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. B. Tchounwou, C. G. Yedjou, A. K. Patlolla and D. J. Sutton, in Heavy metal toxicity and the environment, A. Luch Eds., Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, Springer, Basel (2012).

  2. V. Bianchi, A. Zantedeschi, A. Montaldi and F. Majone, Toxicol. Lett., 23, 51 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. S. Chen, Q. Yue, B. Gao, Q. Li and X. Xu, Chem. Eng. J., 168, 909 (2011).

    Article  CAS  Google Scholar 

  4. S. Shariati, M. Khabazipour and F. Safa, J. Porous Mater., 24, 129 (2017).

    Article  CAS  Google Scholar 

  5. T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. Shi, J. I. Yeh, J. I. Zink and A. E. Nel, ACS Nano, 10, 2121 (2008).

    Article  CAS  Google Scholar 

  6. F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. M. K. Dinker and P. S. Kulkarni, J. Chem. Eng. Data, 60, 2521 (2015).

    Article  CAS  Google Scholar 

  8. P. P. Martin, M. F. Agosto, J. F. Bengoa and N. A. Fellenz, J. Environ. Chem. Eng., 5, 1210 (2017).

    Article  CAS  Google Scholar 

  9. J. C. Almeida, C. E. D. Cardoso, D. S. Tavares, R. Freitas, T. Trindade, C. Vale and E. Pereira, Trends Anal. Chem., 118, 277 (2019).

    Article  CAS  Google Scholar 

  10. K. Biswas, D. Bandhoyapadhyay and U. C. Ghosh, Adsorption, 13, 83 (2007).

    Article  CAS  Google Scholar 

  11. M. Alcala and C. Real, Solid State Ion., 177, 955 (2006).

    Article  CAS  Google Scholar 

  12. S. Zhu, Y. Leng, M. Yan, X. Tuo, J. Yang, L. Almásy, Q. Tian, G. Sun, L. Zou, Q. Li, J. Courtois and H. Zhang, Appl. Surf. Sci., 447, 381 (2018).

    Article  CAS  Google Scholar 

  13. W.-W. Wang and J.-L. Yao, Mater. Lett., 64, 840 (2010).

    Article  CAS  Google Scholar 

  14. R. J. Desch, J. Kim and S. W. Thiel, Micropor. Mesopor. Mater., 187, 29 (2014).

    Article  CAS  Google Scholar 

  15. P. N. R. Kishore and P. Jeevanandam, J. Alloy. Compd., 522, 51 (2012).

    Article  CAS  Google Scholar 

  16. R. Nicola, O. Costişor, M. Ciopec, A. Negrea, R. Lazău, C. Ianăşi, E.-M. Picioruş, A. Len, L. Almásy, E. I. Szerb and A.-M. Putz, Appl. Sci., 10, 2726 (2020).

    Article  CAS  Google Scholar 

  17. X. Zhang, T. Cheng, C. Chen, L. Wang, Q. Deng, G. Chen and C. Ye, Mater. Res. Express, 7, 085007 (2020).

    Article  CAS  Google Scholar 

  18. M. Bashir, S. Riaz and S. Naseem, Mater. Today: Proceedings, 2 B, 5664 (2015).

    Google Scholar 

  19. A. Ercuta, IEEE Trans. Instrum. Meas., 69, 1643 (2020).

    Article  Google Scholar 

  20. A. I. Kuklin, D. V. Soloviev, A. V. Rogachev, P. K. Utrobin, Yu. S. Kovalev, M. Balasoiu, O. I. Ivankov, A. P. Sirotin, T. N. Murugova, T. B. Petukhova, Yu. E. Gorshkova, R. V. Erhan, S. A. Kutuzov, A. G. Soloviev and V. I. Gordeliy, J. Phys. Conf. Ser., 291, 012013 (2011).

    Article  CAS  Google Scholar 

  21. A. I. Kuklin, A. D. Rogov, Yu. E. Gorshkova, P. K. Utrobin, Yu. S. Kovalev, A. V. Rogachev, O. I. Ivankov, S. A. Kutuzov, D. V. Soloviov and V. I. Gordeliy, Phys. Part. Nucl. Lett., 8(2), 200 (2011).

    Article  CAS  Google Scholar 

  22. A. I. Kuklin, A. Kh. Islamov and V. I. Gordeliy, Neutron News, 16, 16 (2005).

    Article  Google Scholar 

  23. M. Nyam-Osor, D. V. Soloviov, Yu. S. Kovalev, A. Zhigunov, A. V. Rogachev, O. I. Ivankov, R. V. Erhan and A. I. Kuklin, J. Phys. Conf. Ser., 351(1), 012024 (2012).

    Article  CAS  Google Scholar 

  24. A. G. Soloviev, T. M. Solovjeva, O. I. Ivankov, D. V. Soloviov, A. V. Rogachev and A. I. Kuklin, J. Phys. Conf. Ser., 848(1), 012020 (2017).

    Article  CAS  Google Scholar 

  25. P. Scherrer, Nachr. Ges. Wiss. Gottingen, 26, 98 (1918).

    Google Scholar 

  26. Z. Dudás, E. Fagadar-Cosma, A. Len, L. Románszki, L. Almásy, B. Vlad-Oros, D. Dascălu, A. Krajnc, M. Kriechbaum and A. Kuncser, Materials, 11(4), 565 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  27. A.-M. Putz, A. Len, C. Ianasi, C. Savii and L. Almásy, Korean J. Chem. Eng., 33, 749 (2016).

    Article  CAS  Google Scholar 

  28. N. N. Gubanova, A. Ye. Baranchikov, G. P. Kopitsa, L. Almásy, B. Angelov, A. D. Yapryntsev, L. Rosta and V. K. Ivanov, Ultrason. Sonochem., 24, 230 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. C. Ianasi, O. Costisor, A.-M. Putz, R. Lazau, A. Negrea, D. Niznansky, L. Sacarescu and C. Savii, Process. Appl. Ceram., 10, 265 (2016).

    Article  CAS  Google Scholar 

  30. A. Ercuta and M. Chirita, J. Cryst. Growth, 380, 182 (2013).

    Article  CAS  Google Scholar 

  31. M. Handa and H. Miyamoto, Inorg. Chim. Acta, 203, 61 (1992).

    Article  Google Scholar 

  32. Y. Yukawa, M. Handa and Y. Hoshino, J. Solution Chem., 24(1), 19 (1995).

    Article  CAS  Google Scholar 

  33. Ph. Colomban and A. Slodczyk, Acta Phys. Pol. A, 116, 7 (2009).

    Article  CAS  Google Scholar 

  34. I. Diaz-Acosta, J. Baker, W. Cordes and P. Pulay, J. Phys. Chem. A, 105, 238 (2001).

    Article  CAS  Google Scholar 

  35. U. A. Jayasooriya, J. N. T. Peck, J. E. Barclay, S. M. Hardy, A. I. Chumakov, D. J. Evans, C. J. Peakett and V. S. Oganesyan, Chem. Phys. Lett., 518, 119 (2011).

    Article  CAS  Google Scholar 

  36. I. Pavel, A. Szeghalmi, D. Moigno, S. Cinta and W. Kiefer, Biopolymers, 72(1), 25 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. T. F. Tirrell, M. L. Paddock, A. R. Conlan, E. J. Smoll Jr., R. Nechushtai, P. A. Jennings and J. E. Kim, Biochemistry, 48(22), 4747 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl. Chem., 87, 1051 (2015).

    Article  CAS  Google Scholar 

  39. C. Ianăşi, M. Picioruş, R. Nicola, M. Ciopec, A. Negrea, D. Nižńanský, A. Len, L. Almásy and A.-M. Putz, Korean J. Chem. Eng., 36, 688 (2019).

    Article  CAS  Google Scholar 

  40. M. Kosmulski, Surface charging and points of zero charge, engineering and technology, Physical Sciences, CRC Press, Boca Raton (2009).

    Book  Google Scholar 

  41. K. Mulani, S. Daniels, K. Rajdeo, S. Tambe and N. Chavan, J. Polym., 2013, Article ID 798368 (2013).

  42. Y. S. Ho, J. Hazard. Mater., 136, 681 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. M. Yurdakoc, Y. Seki, S. Karahan and K. Yurdakoc, J. Colloid Interface Sci., 286, 440 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Y. Zhang, F. Yu, W. Cheng, J. Wang and J. Ma, J. Chem., 2017, Article ID 1936829 (2017).

  45. R. Abraham, S. Mathew, S. Kurian, M. P. Saravanakumar, A. M. Ealias and G. George, Ultrason. Sonochem., 49, 175 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. K. Vijayaraghavan, J. Mao and Y. S. Yun, Bioresour. Technol., 99, 2864 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. M. U. Dural, L. Cavas, S. K. Papageorgiou and F. K. Katsaros, Chem. Eng. J., 168, 77 (2011).

    Article  CAS  Google Scholar 

  48. D. Do Duong, Adsorption analysis: Equilibria and kinetics, series on chemical engineering, vol. 2, Imperial College Press, London (1998).

    Google Scholar 

  49. Z. Ren, X. Xu, X. Wang, B. Gao, Q. Yue, W. Song, L. Zhang and H. Wang, J. Colloid Interface Sci., 468, 313 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. K. Handore, S. Bhavsar, A. Horne, P. Chhattise, K. Mohite, J. Ambekar, N. Pande and V. Chabukswar, J. Macromol. Sci. A, 51, 941 (2014).

    Article  CAS  Google Scholar 

  51. S. R. Chowdhury, E. K. Yanful and A. R. Pratt, J. Hazard. Mater., 235–236, 246 (2012).

    Article  PubMed  CAS  Google Scholar 

  52. A. Kelly and K. M. Knowles, Crystallography and crystal defects, 2nd Ed., Wiley, United Kingdom (2012).

    Book  Google Scholar 

  53. J. C. Igwe and A. A. Abia, Eclética Química, 32(1), 33 (2007).

    Article  CAS  Google Scholar 

  54. V. Kavelin, O. Fesenko, H. Dubyna, C. Vidal, T. A. Klar, C. Hrelescu and L. Dolgov, Nanoscale Res. Lett., 12, 197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. B. K. Mohapatra and D. V. R. Rao, Z. Anorg. Allg. Chem., 372(3), 332 (1970).

    Article  CAS  Google Scholar 

  56. M. Windholz, The Merck Index, 9th Ed., vol. 802, Merck & Company, Whitehouse Station, NJ, USA (1976).

    Google Scholar 

  57. A. M. Ealias and M. P. Saravanakumar, J. Environ. Manage., 206, 215 (2018).

    Article  CAS  Google Scholar 

  58. R. Bhatt, B. Sreedhar and P. Padmaja, Int. J. Biol. Macromol., 104, 1254 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. H. Gao, Y. Liu, G. Zeng, W. Xu, T. Li and W. Xia, J. Hazard. Mater., 150, 446 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. G. Burillo, J. Serrano-Gomez and J. Bonifacio-Martinez, J. Mexican Chem. Soc., 57, 80 (2013).

    CAS  Google Scholar 

  61. M. Gheju, I. Balcu and G. Mosoarca, J. Hazard. Mater., 310, 270 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. A. Aliyu, Scientific African, 3, e00069 (2019).

    Article  Google Scholar 

  63. S. Mnasri-Ghnimi and N. Frini-Srasra, Appl. Clay Sci., 158, 150 (2018).

    Article  CAS  Google Scholar 

  64. Renu, Madhu Agarwal and K. Singh, J. Water Reuse Desal., 7(4), 387 (2016).

    Article  Google Scholar 

  65. L. B. Tahar, M. H. Oueslati and M. J. A. Abualreish, J. Colloid Interface Sci., 512, 115 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. S. Shi, J. Yang, S. Liang, M. Li, Q. Gan, K. Xiao and J. Hu, Sci. Total. Environ., 628–629, 499 (2018).

    Article  PubMed  CAS  Google Scholar 

  67. Y. Li, S. Zhu, Q. Liu, Z. Chen, J. Gu, C. Zhu, T. Lu, D. Zhang and J. Ma, Water Res., 47, 4188 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. C. Wan and J. Li, ACS Sustain. Chem. Eng., 3, 2142 (2015).

    Article  CAS  Google Scholar 

  69. V. Srivastava and Y. C. Sharma, Water Air Soil Pollut., 225, 1 (2013).

    Google Scholar 

  70. J. Hu, G. H. Chen and I. M. C. Lo, Water Res., 39, 4528 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. P. Wang and I. M. C. Lo, Water Res., 43, 3727 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. W. Jiang, M. Pelaez, D. D. Dionysiou, M. H. Entezari, D. Tsoutsou and K. O’Shea, Chem. Eng. J., 222, 527 (2013).

    Article  CAS  Google Scholar 

  73. B. N. Mahato and T. Krithiga, Mater Today: Proc., 17, 303 (2019).

    Google Scholar 

  74. R. Ullah, B. K. Deb and M. Y. A. Mollah, Defect Diffus. Forum, 353, 33 (2014).

    Article  CAS  Google Scholar 

  75. J. Zhang, S. Lin, M. Han, Q. Su, L. Xia and Z. Hui, Water, 12, 446 (2020).

    Article  CAS  Google Scholar 

  76. J. Wei, Z. Yang, Y. Sun, C. Wang, J. Fan, G. Kang, R. Zhang, X. Dong and Y. Li, J. Mater. Sci., 54, 6709 (2019).

    Article  CAS  Google Scholar 

  77. M. Xing, Q. Xie, X. Li, T. Guan and D. Wu, Environ. Technol., 41(5), 658 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. A. Ahmadi, S. Heidarzadeh, A. R. Mokhtari, E. Darezereshki and H. A. Harouni, J. Geochem. Explor., 147, 151 (2014).

    Article  CAS  Google Scholar 

  79. L. Yuan and Y. Liu, Chem. Eng., 432, 215 (2013).

    Google Scholar 

  80. E. Matei, A. M. Predescu, G. Coman, M. Bălănescu, M. Sohaciu, C. Predescu, L. Favier and M. Niculescu, Environ. Eng. Manag. J., 15, 1019 (2016).

    Article  CAS  Google Scholar 

  81. B. C. Nyamunda, T. Chivhanga, U. Guyo and F. Chigondo, J. Eng., 2019, Art. ID. 5656983 (2019).

  82. A. Roy and J. Bhattacharya, Chem. Eng., 211–212, 493 (2012).

    Article  CAS  Google Scholar 

  83. A. M. Ealias and M. P. Saravanakumar, Environ. Sci. Pollut. Res., 27, 2955 (2020).

    Article  CAS  Google Scholar 

  84. G. George and M. P. Saravanakumar, Environ. Sci. Pollut. Res., 25, 30236 (2018).

    Article  CAS  Google Scholar 

  85. Y.-J. Zhang, J.-L. Ou, Z.-K. Duan, Z.-J. Xing and Y. Wang, Colloids Surf. A, 481, 108 (2015).

    Article  CAS  Google Scholar 

  86. M. A. Islam, M. J. Angove and D. W. Morton, Environ. Nanotechnol. Monit. Manag., 12, 100267 (2019).

    Google Scholar 

Download references

Acknowledgements

The authors thank the Romanian Academy, the Inter-Academic Exchange Program between Romanian Academy and the Hungarian Academy of Sciences and for the scientific project and grant within the framework of scientific cooperation between Romania and JINR (Joint Institute for Nuclear Research) Dubna, Russia. Authors thank also Associate Professor Aurel Ercuta from West University of Timişoara, Romania, for magnetic measurements and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adina Negrea or Ana-Maria Putz.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ianăşi, C., Ianăşi (b. Svera), P., Negrea, A. et al. Effects of catalysts on structural and adsorptive properties of iron oxide-silica nanocomposites. Korean J. Chem. Eng. 38, 292–305 (2021). https://doi.org/10.1007/s11814-020-0675-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0675-2

Keywords

Navigation