Skip to main content

Advertisement

Log in

Synergistic decomposition of imidacloprid by TiO2-Fe3O4 nanocomposite conjugated with persulfate in a photovoltaic-powered UV-LED photoreactor

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

A Correction to this article was published on 07 June 2019

This article has been updated

Abstract

To facilitate decomposition of imidacloprid (IMD), as a persistent probe insecticide, TiO2-Fe3O4 (TF) nanocomposite was synthesized and characterized. TF particles in size of 50–60 nm with band-gap of 2.8 eV were immobilized onto glass tubes and utilized as a photocatalyst irradiated with ultraviolet-light emitting diode (UV-LED) powered by photovoltaics. Synergistic decomposition of IMD in the photocatalytic reactor injected with persulfate (PS) was investigated. Along with various control and reference tests, parametric studies to evaluate the effects of PS concentration, IMD concentration, and circulation rate on IMD decomposition kinetics and electrical energy consumption were performed. The contribution of various physical and chemical mechanisms to IMD removal was discussed, including self-decomposition, direct photolytic decomposition, chemical oxidation by PS, photolysis of PS to produce sulfate radicals, Fenton-like reaction to produce sulfate radicals, photocatalysis to generate hydroxyl radicals, and adsorption onto catalysts. TF conjugated with PS under UV-LED synergistically decomposed IMD. Additionally, results demonstrated the synergy index factor of 75%, 65%, and 60% for IMD degradation by UV-LED/TF/PS, UV-LED/Fe3O4/PS, and UV-LED/TiO2/PS routes, respectively. Outcomes also showed that utilizing TF can greatly reduce electrical energy consumption. Since all devices used in this study, including UV-LED, were powered solely by a photovoltaic module, the immobilized TF photoreactor was proposed as a sustainable, self-powered, energy-saving, and practical point-of-use decontamination system to remove organic contaminants in water under solar radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 07 June 2019

    The article Synergistic decomposition of imidacloprid by TiO<Subscript>2</Subscript>-Fe<Subscript>3</Subscript>O<Subscript>4</Subscript> nanocomposite conjugated with persulfate in a photovoltaicpowered UV-LED photoreactor, written by Mohammad Reza Eskandarian*,**,***, Mohammad Hossein Rasoulifard**,†, Mostafa Fazli*, Leila Ghalamchi**, and Hyeok Choi***,†, was originally published on the publisher’s internet portal (currently SPringerLink) on 19 February 2019 with misprinted DOI number, 10.1007/s11814-018-0230-1, due to the technical error from converting manuscript file from Microsoft Word to PDF. The correct DOI number for the article is 10.1007/s11814-019-0313-z.

References

  1. M. A Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas and A. M. Mayes, Nature, 452, 301 (2008).

    CAS  PubMed  Google Scholar 

  2. M. A. Montgomery and M. Elimelech, Environ. Sci. Technol., 41, 17 (2007).

    PubMed  Google Scholar 

  3. M. H. Rasoulifard, M. Akrami and M. R. Eskandarian, J. Taiwan Inst. Chem. Eng., 57, 77 (2015).

    CAS  Google Scholar 

  4. J.-L. Liu and M.-H. Wong, Environ. Int., 59, 208 (2013).

    CAS  PubMed  Google Scholar 

  5. R. Loos, G. Locoro, S. Comero, S. Contini, D. Schwesig, F. Werres, P. Balsaa, O. Gans, S. Weiss and L. Blaha, Water Res., 44, 4115 (2010).

    CAS  PubMed  Google Scholar 

  6. K. Fenner, S. Canonica, L. P. Wackett and M. Elsner, Science, 341, 752 (2013).

    CAS  PubMed  Google Scholar 

  7. Label Review Manual for Pesticides, U.S. Environmental Protection Agency, 2015, http://www.epa.gov/oppfead1/labeling/lrm/chap-07.

  8. E. Mathioulakis, V. Belessiotis and E. Delyannis, Desalination, 203, 346 (2007).

    CAS  Google Scholar 

  9. H. Choi, S.R. Al-Abed, D.D. Dionysiou, E. Stathatos and P. Lianos, Sustain. Sci. Eng., 2, 229 (2010).

    CAS  Google Scholar 

  10. A. R. Ribeiro, O. C. Nunes, M. F. R. Pereira and A. M. T. Silva, Environ. Int., 75, 33 (2015).

    CAS  PubMed  Google Scholar 

  11. H. Park, H. Kim, G. Moon and W Choi, Energy Environ. Sci., 9, 411 (2016).

    CAS  Google Scholar 

  12. A. Dhakshinamoorthy, S. Navalon, A. Corma and H. Garcia, Energy Environ. Sci., 5, 9217 (2012).

    CAS  Google Scholar 

  13. R. E. Galian and J. Perez-Prieto, Energy Environ. Sci., 3, 1488 (2010).

    CAS  Google Scholar 

  14. R. T. Koodali and D. Zhao, Energy Environ. Sci., 3, 608 (2010).

    CAS  Google Scholar 

  15. W.-W Li, H.-Q. Yu and Z. He, Energy Environ. Sci., 7, 911 (2014).

    CAS  Google Scholar 

  16. S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo and J. Tang, Energy Environ. Sci., 8, 731 (2015).

    CAS  Google Scholar 

  17. J. Zhang, Y. Wu, M. Xing, S. A. K. Leghari and S. Sajjad, Energy Environ. Sci., 3, 715 (2010).

    Google Scholar 

  18. T. Su, Q. Shao, Z. Qin, Z. Guo and Z. Wu, Acs Catal, 8, 2253 (2018).

    CAS  Google Scholar 

  19. R. Ma, L. Dong, B. Li, T. Su, X. Luo, Z. Qin and H. Ji, Chemistry-Select., 3, 5891 (2018).

    CAS  Google Scholar 

  20. O. Legrini, E. Oliveros and A. M. Braun, Chem. Rev., 93, 671 (1993).

    CAS  Google Scholar 

  21. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D. W Bahnemann, Chem. Rev., 114, 9919 (2014).

    CAS  PubMed  Google Scholar 

  22. E. Brillas, I. Sirés and M. A. Oturan, Chem. Rev., 109, 6570 (2009).

    CAS  PubMed  Google Scholar 

  23. M. Pelaez, P. Falaras, A.G. Kontos, A. Armah, K. O’shea, P.S.M. Dunlop, J. A. Byrne and D. D. Dionysiou, Appl. Catal. B Environ., 121, 30 (2012).

    Google Scholar 

  24. J. Deng, Y. Shao, N. Gao, S. Xia, C. Tan, S. Zhou and X. Hu, Chem. Eng. J., 222, 150 (2013).

    CAS  Google Scholar 

  25. X. Van Doorslaer, K. Demeestere, P. M. Heynderickx, H. Van Langenhove and J. Dewulf, Appl. Catal. B Environ., 101, 540 (2011).

    CAS  Google Scholar 

  26. A. O. Kondrakov, A. N. Ignatev, F. H. Frimmel, S. Brase, H. Horn and A. I. Revelsky, Appl. Catal. B Environ., 160, 106 (2014).

    Google Scholar 

  27. T. Alapi and A. Dombi, J. Photochem. Photobiol. A Chem, 188, 409 (2007).

    CAS  Google Scholar 

  28. R. F. Dantas, O. Rossiter, A. K. R. Teixeira, A. S. M. Simões and V. L. da Silva, Chem. Eng. J., 158, 143 (2010).

    CAS  Google Scholar 

  29. S. Sanches, M. T. B. Crespo and V. J. Pereira, Water Res., 44, 1809 (2010).

    CAS  PubMed  Google Scholar 

  30. S. Bounty, R. A. Rodriguez and K. G. Linden, Water Res., 46, 6273 (2012).

    CAS  PubMed  Google Scholar 

  31. C. Pablos, J. Marugán, R. van Grieken and E. Serrano, Water Res., 47, 1237 (2013).

    CAS  PubMed  Google Scholar 

  32. A. Adak, K. P. Mangalgiri, J. Lee and L. Blaney, Water Res., 70, 74 (2015).

    CAS  PubMed  Google Scholar 

  33. S. Chakma, S. Praneeth and V. S. Moholkar, Ultrason. Sonochem., 38, 652 (2017).

    CAS  PubMed  Google Scholar 

  34. S. Chakma and V. S. Moholkar, Indian Chem. Eng., 57, 359 (2015).

    CAS  Google Scholar 

  35. M. M. Khin, A. S. Nair, V. J. Babu, R. Murugan and S. Ramakrishna, Energy Environ. Sci., 5, 8075 (2012).

    CAS  Google Scholar 

  36. M. Wang, J. Ioccozia, L. Sun, C. Lin and Z. Lin, Energy Environ. Sci., 7, 2182 (2014).

    CAS  Google Scholar 

  37. I. Ali, Chem. Rev., 112, 5073 (2012).

    CAS  PubMed  Google Scholar 

  38. M. Rasoulifard, M. Fazli and M. Eskandarian, J. Ind. Eng. Chem., 20, 3695 (2014).

    CAS  Google Scholar 

  39. L. Tan, X. Zhang, Q. Liu, X. Jing, J. Liu, D. Song, S. Hu, L. Liu and J. Wang, Colloids Surfaces A Physicochem. Eng. Asp., 469, 279 (2015).

    CAS  Google Scholar 

  40. M. A. Habila, Z. A. ALOthman, A. M. El-Toni, J. P. Labis and M. Soylak, Talanta, 154, 539 (2016).

    CAS  PubMed  Google Scholar 

  41. T. Xin, M. Ma, H. Zhang, J. Gu, S. Wang, M. Liu and Q. Zhang, Appl. Surf. Sci., 288, 51 (2014).

    CAS  Google Scholar 

  42. J. Zhan, H. Zhang and G. Zhu, Ceram. Int., 40, 8547 (2014).

    CAS  Google Scholar 

  43. P. Zhang, Z. Mo, L. Han, X. Zhu, B. Wang and C. Zhang, Ind. Eng. Chem. Res., 53, 8057 (2014).

    CAS  Google Scholar 

  44. Q. He, Z. Zhang, J. Xiong, Y Xiong and H. Xiao, Opt. Mater. (Amst), 31, 380 (2008).

    CAS  Google Scholar 

  45. T. Harif and M. Montazer, Sep. Purif. Technol., 134, 210 (2014).

    Google Scholar 

  46. F. Deng, Y. Li, X. Luo, L. Yang and X. Tu, Colloids Surfaces A Physicochem. Eng. Asp., 395, 183 (2012).

    CAS  Google Scholar 

  47. S. Vilhunen and M. Sillanpää, Rev. Environ. Sci. Bio/Technology, 9, 323 (2010).

    CAS  Google Scholar 

  48. W. Jo, G. T. Park and R. J. Tayade, J. Chem. Technol. Biotechnol., 90, 2280 (2015).

    CAS  Google Scholar 

  49. E. Korovin, D. Selishchev, A. Besov and D. Kozlov, Appl. Catal. B Environ., 163, 143 (2015).

    CAS  Google Scholar 

  50. Q. Zhang, C.-F. Wang, L.-T. Ling and S. Chen, J. Mater. Chem. C, 2, 4358 (2014).

    CAS  Google Scholar 

  51. M. R. Eskandarian, M. Fazli, M. H. Rasoulifard and H. Choi, Appl. Catal. B Environ, 183, 407 (2016), DOI:https://doi.org/10.1016/j.apcatb.2015.11.004.

    CAS  Google Scholar 

  52. M. R. Eskandarian, H. Choi, M. Fazli and M. H. Rasoulifard, Chem. Eng. J., 300, 414 (2016), DOI:https://doi.org/10.1016/j.cej.2016.05.049.

    CAS  Google Scholar 

  53. M. D. Sobsey, Managing water in the home: accelerated health gains from improved water supply, World Health Organization (2002).

  54. S. Gundry, M. Sobsey and J. Wright, Waterlines., 23, 14 (2005).

    Google Scholar 

  55. J. Brown and M. D. Sobsey, Am. J. Trop. Med. Hyg., 87, 394 (2012).

    PubMed  PubMed Central  Google Scholar 

  56. D. Mäusezahl, A. Christen, G. D. Pacheco, F. A. Tellez, M. Iriarte, M. E. Zapata, M. Cevallos, J. Hattendorf, M. D. Cattaneo and B. Arnold, PLoS Med., 6, e1000125 (2009).

    PubMed  PubMed Central  Google Scholar 

  57. B. Parida, S. Iniyan and R. Goic, Renew. Sustain. Energy Rev., 15, 1625 (2011).

    CAS  Google Scholar 

  58. O. Autin, C. Romelot, L. Rust, J. Hart, P. Jarvis, J. MacAdam, S. A. Parsons and B. Jefferson, Chemosphere, 92, 745 (2013).

    CAS  PubMed  Google Scholar 

  59. M. A. Würtele, T. Kolbe M. Lipsz A. Külberg M. Weyers, M. Kneissl and M. Jekel, Water Res., 45, 1481 (2011).

    PubMed  Google Scholar 

  60. M. A. S. Ibrahim, J. MacAdam, O. Autin and B. Jefferson, Environ. Technol., 35, 400 (2014).

    CAS  PubMed  Google Scholar 

  61. C. Chatterley and K. Linden, J. Water Health, 8, 479 (2010).

    CAS  PubMed  Google Scholar 

  62. G. Y. Lui, D. Roser, R. Corkish, N. Ashbolt, P. Jagals and R. Stuetz, Sci. Total Environ., 493, 185 (2014).

    CAS  PubMed  Google Scholar 

  63. G. Y. Lui, D. Roser, R. Corkish, N.J. Ashbolt and R. Stuetz, Sci. Total Environ., 553, 626 (2016).

    CAS  PubMed  Google Scholar 

  64. O. Iglesias, J. Gómez, M. Pazos and M. Á. Sanromán, Appl. Catal. B Environ, 144, 416 (2014).

    CAS  Google Scholar 

  65. S. Wu, A. Sun, F. Zhai, J. Wang, W. Xu, Q. Zhang and A. A. Volinsky, Mater. Lett., 65, 1882 (2011).

    CAS  Google Scholar 

  66. Y. Eom, M. Abbas, H. Noh and C. Kim, RSC Adv., 6, 15861 (2016).

    CAS  Google Scholar 

  67. S. Liu, K. Yao, L.-H. Fu and M.-G. Ma, RSC Adv., 6, 2135 (2016).

    CAS  Google Scholar 

  68. G. P. Anipsitakis and D. D. Dionysiou, Environ. Sci. Technol., 37, 4790 (2003).

    CAS  PubMed  Google Scholar 

  69. G. P. Anipsitakis and D. D. Dionysiou, Environ. Sci. Technol., 38, 3705 (2004).

    CAS  PubMed  Google Scholar 

  70. Z. Xu, C. Shan, B. Xie, Y. Liu and B. Pan, Appl. Catal. B Environ., 200, 439 (2017).

    CAS  Google Scholar 

  71. J. R. Bolton, K. G. Bircher, W. Tumas and C. A. Tolman, Pure Appl. Chem., 73, 627 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Hossein Rasoulifard or Hyeok Choi.

Supporting Information

11814_2018_230_MOESM1_ESM.pdf

Synergistic decomposition of imidacloprid by TiO2-Fe3O4 nanocomposite conjugated with persulfate in a photovoltaic-powered UV-LED photoreactor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandarian, M.R., Rasoulifard, M.H., Fazli, M. et al. Synergistic decomposition of imidacloprid by TiO2-Fe3O4 nanocomposite conjugated with persulfate in a photovoltaic-powered UV-LED photoreactor. Korean J. Chem. Eng. 36, 965–974 (2019). https://doi.org/10.1007/s11814-018-0230-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0230-1

Keywords

Navigation