Skip to main content
Log in

Effects of oxygen plasma generated in magnetron sputtering of ruthenium oxide on pentacene thin film transistors

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Effects of oxygen plasma generated in a sputtering process for deposition of electrodes on pentacene thin films to configure top-contact (TC) transistors have been thoroughly investigated. Reactive oxygen species severely degraded electrical properties of pentacene films during the deposition of RuOx electrodes, leading to a failure of devices. In the off-region, the leakage current increased by about two orders of magnitude, and the subthreshold slope also increased by 6.5 times. The top surface of pentacene films was oxidized by oxygen plasma and C-O and C=O bonds awerere created. The pentacenequinone derivative was confirmed by X-ray photoelectron spectroscopy. The oxidation of pentacene films gives rise to charge traps at the pentacene/electrode interface, which produces a leakage channel between source and drain electrodes. We believe that this side effect of oxygen plasma on the fabrication of TC-devices should be considered carefully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.T. Kamtekar, A. P. Monkman and M.R. Bryce, Adv. Mater., 22, 572 (2010).

    Article  CAS  Google Scholar 

  2. C.R. Newman, C.D. Frisbie, D.A. da Silva Filho, J.-L. Bredas, P.C. Ewbank and K.R. Mann, Chem. Mater., 16, 4436 (2004).

    Article  CAS  Google Scholar 

  3. E. Fortunato, P. Barquinha and R. Martins, Adv. Mater., 24, 2945 (2012).

    Article  CAS  Google Scholar 

  4. A. R. Murphy and J.M. J. Frechet, Chem. Rev., 107, 1066 (2007).

    Article  CAS  Google Scholar 

  5. S.W. Rhee and D. J. Yun, J. Mater. Chem., 18, 5437 (2008).

    Article  CAS  Google Scholar 

  6. A. Facchetti, M.H. Yoon and T. J. Marks, Adv. Mater., 17, 1705 (2005).

    Article  CAS  Google Scholar 

  7. C.D. Dimitrakopoulos and P.R. L. Malenfant, Adv. Mater., 14, 99 (2002).

    Article  CAS  Google Scholar 

  8. P. Cosseddu and A. Bonfiglio, Thin Solid Films, 515, 7551 (2007).

    Article  CAS  Google Scholar 

  9. D. J. Yun, S. Lee, K. Yong and S.-W. Rhee, Appl. Phys. Lett., 97, 073303 (2010).

    Article  Google Scholar 

  10. D. J. Yun and S.W. Rhee, J. Electrochem. Soc., 155, H899 (2008).

    Article  CAS  Google Scholar 

  11. C.W. Chu, S. H. Li, C.W. Chem, V. Shrotriya and Y. Yang, Appl. Phys. Lett., 87, 193508 (2005).

    Article  Google Scholar 

  12. X.-H. Zhang, B. Domercq, X. Wang, S. Yoo, T. Kondo, Z. L. Wang and B. Kippelen, Org. Electron., 8, 718 (2007).

    Article  CAS  Google Scholar 

  13. D.H. Kim, D.W. Kim, K. S. Kim, H. J. Kim, J. S. Moon, M. P. Hong, B. S. Kim, J. H. Shin, Y. M. Kim, K. K. Song and S. S. Shin, Jpn. J. Appl. Phys., 47, 5672 (2008).

    Article  CAS  Google Scholar 

  14. A. Rolland, J. Richard, J.-P. Kleider and D. Mencaraglia, J. Electrochem. Soc., 140, 3679 (1993).

    Article  CAS  Google Scholar 

  15. M. McDowell and I.G. Hill, Appl. Phys. Lett., 88, 073505 (2006).

    Article  Google Scholar 

  16. H.K. Kim, I.-H. Yu, J. H. Lee, T. J. Park and C. S. Hwang, ACS Appl. Mater. Interfaces, 5, 1327 (2013).

    Article  CAS  Google Scholar 

  17. S. Park, W. Kim and Y. Kim, Korean J. Chem. Eng., 34, 1500 (2017).

    Article  CAS  Google Scholar 

  18. F. So and D. Kondakov, Adv. Mater., 22, 3762 (2010).

    Article  CAS  Google Scholar 

  19. M. Park, J.-S. Park, I. K. Han and J.Y. Oh, J. Mater. Chem. A., 4, 11307 (2016).

    Article  CAS  Google Scholar 

  20. S. J. Kang, Y. Yi, C.Y. Kim, K.-H. Yoo, A. Moewes, M. H. Cho, J.D. Denlinger, C.N. Whang and G. S. Chang, Phys. Rev. B, 72, 205328 (2005).

    Article  Google Scholar 

  21. P. Parisse, S. Picozzi and L. Ottaviano, Org. Elec., 8, 498 (2007).

    Article  CAS  Google Scholar 

  22. H.W. Zan and C.-W. Chou, Jpn. J. Appl. Phys., 48, 031501 (2009).

    Article  Google Scholar 

  23. K. Ono, H. Totani, T. Hiei, A. Yoshino, K. Saito, K. Eguchi, M. Tomura, J. Nishida and Y. Yamashita, Tetrahedron, 63, 9699 (2007).

    Article  CAS  Google Scholar 

  24. Y. Matsumoto, T. Ohsawa, K. Nakajima and H. Koinuma, Meas. Sci. Technol., 16, 199 (2005).

    Article  CAS  Google Scholar 

  25. A. Vollmer, H. Weiss, S. Rentenberger, I. Salzmann, J. P. Rabe and N. Koch, Surf. Sci., 600, 4004 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Woosung Kwon or Minwoo Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T., Lim, B., Yong, K. et al. Effects of oxygen plasma generated in magnetron sputtering of ruthenium oxide on pentacene thin film transistors. Korean J. Chem. Eng. 34, 2502–2506 (2017). https://doi.org/10.1007/s11814-017-0142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0142-x

Keywords

Navigation