Skip to main content
Log in

Comparative study of modeling the stability improvement of sunflower oil with olive leaf extract

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Commercially available sunflower oil was enriched in polyphenols by adding olive leaf extract. After extracting the dried and ground olive leaves with the assistance of homogenizer, total phenolic content (TPC) and oleuropein concentration of the extract were determined. The dried extract was partially dissolved into the sunflower oil to increase the quality and shelf-life of the oil enriched by the substances in the plants by means of solid-liquid extraction method. A face central composite design (FCCD) through response surface methodology (RSM) was used to investigate the effects of enrichment conditions (extract content, time and mixing speed) on the responses, TPC and oleuropein concentration of the enriched sunflower oil as well as to design of experiments, to model and to optimize the process. The enriched sunflower oil obtained at optimum conditions was evaluated in terms of its TPC, oleuropein, total carotenoid content (TCC), antioxidant activity (AA), peroxide value (PV) and induction time (IT), depending on those of the crude oil. Furthermore, artificial neural networks (ANN) were also employed to compare the predicted results of RSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edible Oils, http://events.bestgraz.org/assets/files/events/WiC12/Edible_oils.pdf (2015).

  2. Sunflower, Crude and Refined Oils, http://www.fao.org/docrep/ 012/al375e/al375e.pdf (2015).

  3. Bioenergy, http://www.bioenergytrade.org/downloads/vegetableoilstudyfinaljune18. pdf (2015).

  4. S. Sahin and R. Samli, Ultrason Sonochem., 20, 595 (2013).

    Article  CAS  Google Scholar 

  5. R. Japón-Luján, P. Janeiro and M.D. Luque de Castro, J. Agric. Food Chem., 56, 7231 (2008).

    Article  Google Scholar 

  6. S. Achat, V. Tomao, K. Madani, M. Chibane, M. Elmaataoui, O. Dangles and F. Chemat, Ultrason. Sonochem., 19, 777 (2012).

    Article  CAS  Google Scholar 

  7. F. N. Salta, A. Mylona, A. Chiou, G. Boskou and N.K. Andrikopoulos, Food Sci. Tech. Int., 13, 413 (2007).

    CAS  Google Scholar 

  8. F. Paima-Martins, R. Correia, S. Felix, P. Ferreira and M.H. Gordon, J. Agric. Food Chem., 55, 4139 (2007).

    Article  Google Scholar 

  9. R. Japón-Luján and M.D. Luque de Castro, J. Agric. Food Chem., 56, 2505 (2008).

    Article  Google Scholar 

  10. Z. Rafiee, S. M. Jafari, M. Alami and M. Khomeiri, J. Agr. Sci. Tech., 14, 1497 (2012).

    Google Scholar 

  11. P. Jimenez, L. Masson, A. Barriga, J. Chavez and P. Robert, Eur. J. Lipid Sci. Technol., 113, 497 (2011).

    Article  CAS  Google Scholar 

  12. V. Sanchéz de Medina, F. Priego-Capote, C. Jimenez-Ot and M.D. Luque de Castro, J. Agric. Food Chem., 59, 11432 (2011).

    Article  Google Scholar 

  13. N. S.A. Malik and J.M. Bradford, Sci. Hortic., 110, 274 (2006).

    Article  CAS  Google Scholar 

  14. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Free Radic. Biol. Med., 26, 1231 (1999).

    Article  CAS  Google Scholar 

  15. M. Chuang and G. Brunner, J. Supercrit. Fluid, 37, 151 (2006).

    Article  CAS  Google Scholar 

  16. N.R. Draper and J.A. John, Technometrics, 30, 423 (1998).

    Article  Google Scholar 

  17. S. Haykin, Neural Networks-A Comprehensive Foundation, second ed. New Jersey: Prentice Hall (1998).

    Google Scholar 

  18. R. Gosukonda, A. K. Mahapatra, X. Liu and G. Kannan, Food Control, 47, 606 (2015).

    Article  Google Scholar 

  19. K. Kilic, I. H. Boyaci, H. Koksel and I. Kusmenoglu, J. Food Eng., 78(3), 897 (2007).

    Article  Google Scholar 

  20. M. Kashaninejad, A.A. Dehghani and M. Kashiri, J. Food Eng., 91(4), 602 (2009).

    Article  Google Scholar 

  21. E. Razmi-Rad, B. Ghanbarzadeh, S. M. Mousavi, Z. Emam-Djomeh and J. Khazaei, J. Food Eng., 81(4), 728 (2007).

    Article  Google Scholar 

  22. J. I. Arribas, G.V. Sánchez-Ferrero, G. Ruiz-Ruiz and J. Gómez-Gil, Comput. Electron. Agr., 78(1), 9 (2011).

    Article  Google Scholar 

  23. S. F. Silva, C.A. R. Anjos, R.N. Cavalcanti and R.M. S. Celeghini, Food Chem., 179, 35 (2015).

    Article  CAS  Google Scholar 

  24. G. Gatica, S. Best, J. Ceroni and G. Lefranc, Procedia Comput. Sci., 17, 412 (2013).

    Article  Google Scholar 

  25. F. Marini, A. L. Magrì, R. Bucci and A.D. Magrì, Anal Chim. Acta, 599(2), 232 (2007).

    Article  CAS  Google Scholar 

  26. J. S. Torrecilla, S. Vidal, R. Aroca-Santos, S. C. Wang and J. C. Cancilla, Talanta, 144, 363 (2015).

    Article  CAS  Google Scholar 

  27. Mathworks, http://www.mathworks.com/help/nnet/ref/trainlm. html (2016).

  28. G. Peretto, W.X. Duss, R. J. Avena-Bustillos, J.D. J. Berrios, P. Sambo and T. H. McHugh, J. Agric. Food Chem., 62, 984 (2014).

    Article  CAS  Google Scholar 

  29. A. Saldaña-Robles, R. Guerra-Sanchéz, M. Maldonado-Rubio and J. Peralta-Hernández, J. Ind. Eng. Chem., 20, 848 (2014).

    Article  Google Scholar 

  30. M. Danish, R. Hashim, M. N. M. Ibrahim and O. Sulaiman, Biomass. Bioenerg., 61, 167 (2014).

    Article  CAS  Google Scholar 

  31. P. Kittisuban, P. Ritthiruangdej and M. Suphantharika, LWT -Food Sci. Technol., 57, 738 (2014).

    Article  CAS  Google Scholar 

  32. S.R. Elsen and T. Ramesh, Int. J. Refract. Met. Hard Mater, 52, 159 (2015).

    Article  CAS  Google Scholar 

  33. W. H. Ho and S. J. Hsieh, Anal Chim. Acta, 428, 111 (2001).

    Article  CAS  Google Scholar 

  34. M. Bilgin and S. Sahin, J. Taiw. Inst. Chem. Eng., 44, 8 (2013).

    Article  CAS  Google Scholar 

  35. M. I. Georgiev, J. Weber and J. Maciuk, Appl. Microbiol. Biotechnol., 83, 809 (2009).

    Article  CAS  Google Scholar 

  36. T. S. Ballard, P. Mallikarjunan, K. Zhou and S. O’Keefe, Food Chem., 120, 1185 (2010).

    Article  CAS  Google Scholar 

  37. S. Sahin, Korean J. Chem. Eng., 32, 950 (2015).

    Article  CAS  Google Scholar 

  38. E.W.C. Chan, Y.Y. Lim, S.K. Wong, K.K. Lim, S.P. Tan, F.S. Lianto and M.Y. Yong, Food Chem., 113, 166 (2009).

    Article  CAS  Google Scholar 

  39. B. Jannat, M.R. Oveisi, N. Sadeghi, B. Abdolazim, M. Hajimahmoodi, F. Jannad and S. Khoshnamfar, Iran J. Pharm. Res., 7, 269 (2008).

    Google Scholar 

  40. A. Chiou, N. Kalogeropoulos, F.N. Salta, E. Panayiota and N.K. Andrikopoulos, LWT - Food Sci. Technol., 42, 1090 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selin Şahin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, S., Sayim, E. & Samli, R. Comparative study of modeling the stability improvement of sunflower oil with olive leaf extract. Korean J. Chem. Eng. 34, 2284–2292 (2017). https://doi.org/10.1007/s11814-017-0106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0106-1

Keywords

Navigation