Skip to main content
Log in

The effects of the thermal treatment of activated carbon on the phenols adsorption

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The adsorptive properties of thermally treated activated carbon at 1,500 and 1,800 °C were investigated. The adsorption kinetics and adsorption efficiency of phenol, 4-chlorophenol and 2,4-dichlorophenol from aqueous solutions were examined. The adsorption kinetic data were analyzed using the pseudo-first and pseudo-second order models, while the equilibrium adsorption data were described by the Langmuir and Freundlich isotherms. The adsorption rate and efficiency increased in the order: phenol<4-chlorophenol<2,4-dichlorophenol. The activated carbons were also used for the modification of the carbon paste electrodes for the detection of the phenols based on the differential pulse voltammetry. Compared to the non-modified electrode, all the new paste electrodes showed a significantly greater sensitivity for the detection of the phenols. The signal response was closely related to the porosity of the materials used, and increased with an increase in the adsorption ability and the specific surface area of the modifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.Y. Yin, M. K. Aroua and W. M. A.W. Daud, Sep. Purif. Technol., 52, 403 (2007).

    Article  CAS  Google Scholar 

  2. A. Bhatnagar, W. Hogland, M. Marques and M. Sillanpää, Chem. Eng. J., 219, 499 (2013).

    Article  CAS  Google Scholar 

  3. H. Grajek, A. Świątkowski, Z. Witkiewicz, M. Pakuła and S. Biniak, Ads. Sci. Technol., 19, 565 (2001).

    Article  CAS  Google Scholar 

  4. R. E. Franklin, Proc. of the Royal Society of London, Series A, Mathematical and Physical Sciences, 209, 196 (1951).

    Article  CAS  Google Scholar 

  5. M. M. Dubinin, Thermal treatment and microporous structure of carbonaceous adsorbents, Proc. of the Fifth Conference on Carbon, vol. 1, Pennsylvania State University, Pergamon Press Inc., New York (1962).

    Google Scholar 

  6. F.G. Emmerich, Carbon, 33(12), 1709 (1995).

    Article  CAS  Google Scholar 

  7. M. Inagaki, M. Toyoda and T. Tsumura, RSC Adv., 4, 41411 (2014).

    Article  CAS  Google Scholar 

  8. G. Sun, C. Wang, L. Zhan, W. Qiao, X. Liang and L. Ling, J. Mater. Sci. Eng., 2, 41 (2008).

    Google Scholar 

  9. M. Bonarowska, W. Raróg-Pilecka and Z. Karpiński, Catal. Today, 169, 223 (2011).

    Article  CAS  Google Scholar 

  10. A. Świątkowski, A. Deryło-Marczewska, J. Goworek and S. Błażewicz, Appl. Surf. Sci., 236, 313 (2004).

    Article  Google Scholar 

  11. I. Svancara, K. Vytras, K. Kalcher, A. Walcarius and J. Wang, Electroanalysis, 21, 7 (2009).

    Article  CAS  Google Scholar 

  12. I. Svancara, K. Kalcher, A. Walcarius and K. Vytras, Electroanalysis with carbon paste electrodes, CRC Press, Taylor & Francis Group, Boca Raton (2012).

    Google Scholar 

  13. S. Błażewicz, A. Świątkowski and B. J. Trznadel, Carbon, 37, 693 (1999).

    Article  Google Scholar 

  14. S. Biniak, M. Pakuła, A. Świątkowski, M. Bystrzejewski and S. Błażewicz, J. Mater. Res., 25(8), 1617 (2010).

    Article  CAS  Google Scholar 

  15. S. Lagergren, Vetenskapsakad. Handl., 24, 1 (1898).

    Google Scholar 

  16. Y. S. Ho and G. McKay, Process Biochem., 34, 451 (1999).

    Article  CAS  Google Scholar 

  17. R.L. Tseng, K.T. Wu, F.C. Wu and R.S. Juang, J. Environ. Manage., 91, 2208 (2010).

    Article  CAS  Google Scholar 

  18. F.C. Wu, R. L. Tseng, S.C. Huang and R.S. Juang, Chem. Eng. J., 151, 1 (2009).

    Article  CAS  Google Scholar 

  19. Q. S. Liu, T. Zheng, P. Wang, J. P. Jiang and N. Li, Chem. Eng. J., 157, 348 (2010).

    Article  CAS  Google Scholar 

  20. R. L. Tseng, P. H. Wu, F. C. Wu and R. S. Juang, Chem. Eng. J., 237, 153 (2014).

    Article  CAS  Google Scholar 

  21. N.G. Rincon-Silva, J.C. Moreno-Pirajan and L. Giraldo, Adsorption, 22, 33 (2016).

    Article  CAS  Google Scholar 

  22. P. Strachowski and M. Bystrzejewski, Colloids Surf., A, 467, 113 (2015).

    Article  CAS  Google Scholar 

  23. Z.N. Garba and A.A. Rahim, Process Saf. Environ., 102, 54 (2016).

    Article  CAS  Google Scholar 

  24. K. Kuśmierek, Reac. Kinet. Mech. Cat., 119, 19 (2016).

    Article  Google Scholar 

  25. S. Jain and R.V. Jayaram, Sep. Sci. Technol., 42, 2019 (2007).

    Article  CAS  Google Scholar 

  26. Y. P. Teoh, M. A. Khan, T. S.Y. Choong, L. C. Abdullah and S. Hosseini, Desalin. Water Treat., 54, 393 (2015).

    Article  CAS  Google Scholar 

  27. E. Lorenc-Grabowska, M. A. Diez and G. Gryglewicz, J. Colloid Interface Sci., 469, 205 (2016).

    Article  CAS  Google Scholar 

  28. I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).

    Article  CAS  Google Scholar 

  29. H.M. F. Freundlich, Z. Phys. Chem., 57, 385 (1906).

    CAS  Google Scholar 

  30. A. Dąbrowski, P. Podkościelny, Z. Hubicki and M. Barczak, Chemosphere, 58, 1049 (2005).

    Article  Google Scholar 

  31. A.A.M. Daifullah and B. S. Girgis, Water Res., 32, 1169 (1998).

    Article  CAS  Google Scholar 

  32. O. Hamdaoui and E. Naffrechoux, J. Hazard. Mater., 147, 381 (2007).

    Article  CAS  Google Scholar 

  33. M.W. Jung, K. H. Ahn, Y. Lee, K. P. Kim, J. S. Rhee, J.T. Park and K. J. Paeng, Microchem. J., 70, 123 (2001).

    Article  CAS  Google Scholar 

  34. Z. Zhang, X. Feng, X. X. Yue, F.Q. An, W. X. Zhou, J. F. Gao, T. P. Hu and C.C. Wei, Korean J. Chem. Eng., 32(8), 1564 (2015).

    Article  CAS  Google Scholar 

  35. M. Carmona, M.T. Garcia, A. Carnicer, M. Madrid and J. F. Rodriguez, J. Chem. Technol. Biotechnol., 89(11), 1660 (2014).

    Article  CAS  Google Scholar 

  36. G. S.M. Hossain and R.G. McLaughlan, Environ. Technol., 33, 1839 (2012).

    Article  CAS  Google Scholar 

  37. K. Kuśmierek, M. Sankowska, K. Skrzypczyńska and A. Świątkowski, J. Colloid Interface Sci., 446, 91 (2015).

    Article  Google Scholar 

  38. K. Skrzypczyńska, K. Kuśmierek and A. Świątkowski, J. Electroanal. Chem., 766, 8 (2016).

    Article  Google Scholar 

  39. H. Yang, X. Zheng, W. Huang and K. Wu, Colloids Surf., B, 65, 281 (2008).

    Article  CAS  Google Scholar 

  40. A. Deryło-Marczewska, M. Zienkiewicz-Strzałka, K. Skrzypczyńska, A. Świątkowski and K. Kuśmierek, Adsorption, 22, 801 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Kuśmierek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuśmierek, K., Świątkowski, A., Skrzypczyńska, K. et al. The effects of the thermal treatment of activated carbon on the phenols adsorption. Korean J. Chem. Eng. 34, 1081–1090 (2017). https://doi.org/10.1007/s11814-017-0015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0015-3

Keywords

Navigation