Skip to main content

Advertisement

Log in

Synthesis of aragonite-precipitated calcium carbonate from oyster shell waste via a carbonation process and its applications

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Oyster shells are abundantly available in nature without eminent use and are dumped into landfills in vast quantities. Their improper disposal causes environmental problems, resulting in a waste of natural resources. Recycling shell waste could potentially eliminate the environmental problems and, moreover, convert the waste into high-valueadded products, such as synthetic precipitated calcium carbonate (PCC), which can be obtained from oyster waste and which is used to enhance the mechanical properties of various materials. It can also be used as a filler material in the plastic and paper industries. This study presents a simple method for the extraction of aragonite needles from oyster shell waste via a carbonation process. The obtained aragonite-precipitated calcium carbonate (PCC) is characterized by XRD and SEM, which is used to assess the morphology and particle size. Using the proposed process, oyster shell waste powder was calcined at 1,000 °C for 2 h, after which the calcined shell powder was dissolved in water for hydration. The hydrated solution was mixed with an aqueous solution of magnesium chloride at 80 °C and CO2 was then bubbled into the suspension for 3 h to produce needle-shaped aragonite PCC. Finally, aragonite-type precipitated calcium carbonate was synthesized from the oyster shell powder via a simple carbonation process, yielding a product with an average particle size of 30-40 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bernal and D. Oliva, The first global integrated marine assessment. World Ocean assessment 1. Chapter 12, United Nations, New York (2016).

    Google Scholar 

  2. FAO, The state of world fisheries and aquaculture, Food and Agriculture Organization of the United Nations (2014).

  3. FAO, Global Aquaculture Production statistics database updated to 2013 Summary information, Food and Agriculture Organization of the United Nations (2015).

  4. H. S. Kim, The study of application of discarded oyster shell powder as an architectural material, Master thesis, Korea (2007).

    Google Scholar 

  5. G. L. Yoon, B.T. Kim, B.O. Kim and S. H. Han, Waste Manage., 23, 825 (2003).

    Article  CAS  Google Scholar 

  6. J. H. Jung, K. S. Yoo, H. G. Kim, H. K. Lee and B. H. Shon, J. Ind. Eng. Chem., 13, 512 (2007).

    CAS  Google Scholar 

  7. H. B. Kwon, C.W. Lee, B. S. Jun, J.D. Yun, S.Y. Weon and B. Koopman, Resour. Conserv. Recy., 41, 75 (2004).

    Article  Google Scholar 

  8. S. Asaoka, T. Yamamoto, S. Kondo and S. Hayakawa, Bioresour. Technol., 100, 4127 (2009).

    Article  CAS  Google Scholar 

  9. W. H. Park and C. Polprasert, Ecol. Eng., 34, 50 (2008).

    Article  Google Scholar 

  10. N. Nakatani, H. Takamori, K. Takeda and H. Sakugawa, Bioresour. Technol., 100, 1510 (2009).

    Article  CAS  Google Scholar 

  11. C.H. Lee, D.K. Lee, M.A. Ali and P. J. Kim, Waste Manage., 28, 2702 (2008).

    Article  CAS  Google Scholar 

  12. H. B. Kwon, C.W. Lee, B. S. Jun, S.Y. Weon and B. Koopman, Resour. Conserv. Recy., 41, 75 (2004).

    Article  Google Scholar 

  13. K. Mori and K. Takahashi, Mizushorigijutu., 39, 1 (1998).

    CAS  Google Scholar 

  14. R.A. F. de Alvarenga, B.M. Galindro Cde. F. Helpa and S.R. Soares, J. Environ. Manage., 106, 102 (2012).

    Article  CAS  Google Scholar 

  15. J. Hutchinson and A.D. O’Sullivan, Scanning electron microscopy of substrates from bioengineered treatment reactors, University of Canterbury, New Zealand (2008).

    Google Scholar 

  16. L. Xiang, Y. Xiang, Y. Wen and F. Wei, Mater. Lett., 58, 959 (2004).

    Article  CAS  Google Scholar 

  17. Z.T. Yao, T. Chen, H.Y. Li, M. S. Xia, Y. Ye and H. Zheng, J. Hazard. Mater., 262, 212 (2013).

    Article  CAS  Google Scholar 

  18. M. Suzuki, S. Sakuda and H. Nagasawa, Biosci. Biotech. Bioch., 71, 1735 (2007).

    Article  CAS  Google Scholar 

  19. Z.T. Yao, M. S. Xia, H.Y. Li, T. Chen, Y. Ye and H. Zheng, Crit. Rev. Env. Sci. Tec., 44, 2502 (2014).

    Article  CAS  Google Scholar 

  20. I. Corni, T. J. Harvey, J. A. Wharton, K.R. Stokes, F. C. Walsh and R. J.K. Wood, Bioinspir. Biomim., 7, 1 (2012).

    Article  Google Scholar 

  21. M.H. Chong, B.C. Chun, Y.C. Chung and B.G. Cho, J. Appl. Polym. Sci., 99, 1583 (2006).

    Article  CAS  Google Scholar 

  22. Z.D. Lin, Z. X. Guan, C. Chen and B. F. Xu, Thermochim. Acta., 551, 149 (2013).

    Article  CAS  Google Scholar 

  23. E. Daniel and P. Luiz Antonio, Mater. Res. Bull., 12, 517 (2009).

    Article  Google Scholar 

  24. H.Y. Li, Y.Q. Tan, L. Zhang, Y. X. Zhang, Y. H. Song, Y. Ye and M. S. Xia, J. Hazard. Mater., 217, 256 (2012).

    Article  Google Scholar 

  25. P.M.A. de Melo, L.B. Silva, A.S.F. Santos, T.A. Passos, S. J.G. Lima and M. M. Ueki, Proceedings of 22nd International Congress of Mechanical Engineering, Ribeirao Preto (2013).

    Google Scholar 

  26. J.W. Ahn, W.K. Park, K.S. You, H.C. Cho, S. J. Ko and C. Han, Solid State Phenom., 124, 707 (2007).

    Article  Google Scholar 

  27. W.K. Park, S. J. Ko, S.W. Lee, K. H. Cho, J.W. Ahn and C. Han, J. Cryst. Growth, 310, 2593 (2008).

    Article  CAS  Google Scholar 

  28. M. Holcomb, A. L. Cohen, R. I. Gabitov and J. L. Hutter, Geochim. Cosmochim. Act., 73, 4166 (2009).

    Article  CAS  Google Scholar 

  29. C. Linga Raju, K.V. Narasimhulu, N.O. Gopal, J. L. Rao and B.C.V. Reddy, J. Mole. Structure., 608, 201 (2002).

    Article  CAS  Google Scholar 

  30. J. Kuther, G. Nelles, R. Seshadri, M. Schaub, H. J. Butt and W. Tremel, Chem. Eur. J., 4, 1834 (1998).

    Article  CAS  Google Scholar 

  31. Y. Ota, S. Inui, T. Iwashita, T. Kasuga and Y. Abe, J. Am. Ceram. Soc., 78, 1983 (1995).

    Article  CAS  Google Scholar 

  32. L. F. Wang, I. Sondi and E. Matijevic, J. Colloid Interface Sci., 218, 545 (1999).

    Article  CAS  Google Scholar 

  33. S.D. Skapin and I. Sondi, J. Colloi Interface Sci., 347, 221 (2010).

    Article  CAS  Google Scholar 

  34. Z. S. Hu and Y.L. Deng, J. Colloid Interface Sci., 266, 359 (2003).

    Article  CAS  Google Scholar 

  35. D. Rautaray, A. Banpurkar, S.R. Sainkar, A.V. Limaye, N.R. Pavaskar, S.B. Ogale and M. Sastry, Adv. Mater., 15, 1273 (2003).

    Article  CAS  Google Scholar 

  36. G. Li, Z. Li and H.W. Ma, Int. J. Min. Proc., 123, 25 (2013).

    Article  CAS  Google Scholar 

  37. C. Domingo, E. Loste, J. Gomez-Morales, J. Garcia-Carmona and J. Fraile, J. Super, Flu., 36, 202 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Whan Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishna, C., Thenepalli, T., Han, C. et al. Synthesis of aragonite-precipitated calcium carbonate from oyster shell waste via a carbonation process and its applications. Korean J. Chem. Eng. 34, 225–230 (2017). https://doi.org/10.1007/s11814-016-0264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0264-6

Keywords

Navigation