Skip to main content
Log in

Density functional theory study on Hg removal mechanisms of Cu-impregnated activated carbon prepared by simplified method

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The preparation of activated carbon sorbent for Hg removal was simplified by combining activation and functionalization processes into one step. Jujube-based carbon material was first mixed with CuCl2 solution and then activated for the preparation of Cu-impregnated activated carbon. Physical and chemical properties of prepared activated carbon were investigated by means of N2 adsorption, SEM-EDS, XRD. A fixed-bed reactor with CEMS (Continuous emission monitoring system) was used to test the Hg adsorption ability of prepared activated carbon. DFT (Density functional theory) method of computational chemistry calculation was applied to identify the Hg adsorption mechanisms on sorbent surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Houston, J. Clin. Hypertens., 13, 621 (2011).

    Article  CAS  Google Scholar 

  2. United Nations Environment Programme, The Global Hg Assessment 2013, Switzerland (2013).

  3. Q. Zhou, Y. Duan, C. Zhu, J. Zhang, M. She, H. Wei and Y. Hong, Korean J. Chem. Eng., 32, 1405 (2015).

    Article  CAS  Google Scholar 

  4. Natural Resources Defense Council, Summary of Recent Mercury Emission Limits for Power Plants in the United States and China, Unites States and China (2012).

  5. A. P. Jones, J. W. Hoffmann, D. N. Smith, T. J. Feeley and J. T. Murphy, Environ. Sci. Technol., 41, 1365 (2007).

    Article  CAS  Google Scholar 

  6. H. Yang, Z. Xu, M. Fan, A. E. Bland and R. R. Judkins, J. Hazard. Mater., 146, 1 (2007).

    Article  CAS  Google Scholar 

  7. H. Hadoun, Z. Sadaoui, N. Souami, D. Sahel and I. Toumert, Appl. Surf. Sci., 280, 1 (2013).

    Article  CAS  Google Scholar 

  8. S. A. Dastgheib, J. Ren, M. Rostam-Abadi and R. Chang, Appl. Surf. Sci., 290, 92 (2014).

    Article  CAS  Google Scholar 

  9. C. Chiu et al., Aerosol Air Qual., Res., 2094, 15 (2015).

    Google Scholar 

  10. L. Zhang, Y. Zhuo, W. Du, Y. Tao, C. Chen and X. Xu, Ind. Eng. Chem. Res., 51, 5292 (2012).

    Article  CAS  Google Scholar 

  11. J. F. González, S. Román, C. M. González-García, J. M. V. Nabais and A. L. Ortiz, Ind. Eng. Chem. Res., 48, 7474 (2009).

    Article  Google Scholar 

  12. J. D. Laumb, S. A. Benson and E. A. Olson, Fuel Process. Technol., 85, 577 (2004).

    Article  CAS  Google Scholar 

  13. R. Landreth, S. Nelson, X. Liu, Z. Tang, A. Overholt and L. Brickett, World of Coal Ash (2007).

    Google Scholar 

  14. F. Goodarzi, J. Environ. Monit., 6, 792 (2004).

    Article  CAS  Google Scholar 

  15. J. Wang, F. Xue, Y. Liu, Physical chemistry, Tsinghua University Press, Beijing (1992).

    Google Scholar 

  16. L. Tao, X. Guo and C. Zheng, P. Combust. Inst., 34, 2803 (2013).

    Article  CAS  Google Scholar 

  17. J. A. Steckel, Phys. Rev. B., 77, 115412 (2008).

    Article  Google Scholar 

  18. L. Geng, L. Han, W. Cen, J. Wang, L. Chang, D. Kong and G. Feng, Appl. Surf. Sci., 321, 30 (2014).

    Article  CAS  Google Scholar 

  19. M. D. Segall, P. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, J. Phys.-Condens. Mat., 14, 2717 (2002).

    Article  CAS  Google Scholar 

  20. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, Z. Kristallogr., 220, 567 (2005).

    CAS  Google Scholar 

  21. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

    Article  CAS  Google Scholar 

  22. H. J. Monkhorst and J. D. Pack, Phys. Rev. B., 13, 5188 (1976).

    Article  Google Scholar 

  23. S. Ramos De Debiaggi, G. F. Cabeza, C. D. Toro, A. M. Monti, S. Sommadossi and A. F. Guillermet, J. Alloy. Compd., 509, 3238 (2011).

    Article  CAS  Google Scholar 

  24. K. Lejaeghere, V. Van Speybroeck, G. Van Oost and S. Cottenier, Crit. Rev. Solid State, 39, 1 (2014).

    Article  CAS  Google Scholar 

  25. A. Soon, M. Todorova, B. Delley and C. Stampfl, Phys. Rev. B., 73 (2006).

  26. B. Zhang, J. Liu, C. Zheng and M. Chang, Chem. Eng. J., 256, 93 (2014).

    Article  CAS  Google Scholar 

  27. A. E. Reed, F. Weinhold, L. A. Curtiss and D. J. Pochatko, J. Chem. Phys., 84, 5687 (1986).

    Article  CAS  Google Scholar 

  28. W. Xiang, J. Liu, M. Chang and C. Zheng, Chem. Eng. J., 200-202, 91 (2012).

    Article  CAS  Google Scholar 

  29. B. Zhang, J. Liu, C. Zheng and M. Chang, Chem. Eng. J., 256, 93 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqun Zhuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Zhuo, Y., Zhu, Z. et al. Density functional theory study on Hg removal mechanisms of Cu-impregnated activated carbon prepared by simplified method. Korean J. Chem. Eng. 33, 2869–2877 (2016). https://doi.org/10.1007/s11814-016-0153-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0153-z

Keywords

Navigation