Skip to main content

Advertisement

Log in

Analysis of thermophysical property data of HI x components for I2 crystallizer design in sulfur-iodine process to produce hydrogen

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

I2 crystallization could be a technical option in HI decomposition section of SI thermochemical water splitting process to increase process efficiency. Design of a crystallizer requires experimental data as well as corresponding equations for thermophysical properties of HI x solution, which is a named ternary solution of H2O, HI, and I2. However, so far, there are no available analyses on them. We collected experimental data and corresponding equations with temperature parameters and compared the equations with the data to analyze their accuracy and credibility. Thermal conductivity was updated in this work while keeping a structure of a corresponding equation. Relative deviations were estimated for liquid density, thermal conductivity, viscosity, and heat capacity and summarized with temperature for H2O, HI, and I2. Solution density and viscosity of binary H2O-HI solution were also analyzed with an empirical equation under a limited condition and with predictable methods exhibiting satisfactory consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-J. Shin, J.-H. Kim, J. Chang, W.-S. Park and J. Park, Nuclear hydrogen production project in Korea. In: Nuclear production of hydrogen, Third Information Exchange Meeting Oarai, Japan 5-7 October 2005, NEA (2006).

    Book  Google Scholar 

  2. J.-H. Chang, Y.-W. Kim, K.-Y. Lee, Y.-W. Lee, W. J. Lee, J.-M. Noh, M.-H. Kim, H.-S. Lim, Y.-J. Shin, K.-K. Bae and K.-D. Jung, Nucl. Eng. Technol., 39, 111 (2007).

    Article  CAS  Google Scholar 

  3. A. Basile and A. Iulianelli Ed., Advances in hydrogen production, storage and distribution, Woodhead Publishing (2014).

    Google Scholar 

  4. IAEA, Proc. Non-electrical applications of nuclear power: Seawater desalination, hydrogen production and other industrial applications, IAEA-CN-152 (2009).

  5. K.-S. Kang, C.-H. Kim, W.-C. Cho, S.-U. Jeong, C.-S. Park and K.-K. Bae, Nucl. Eng. Des., 256, 67 (2013).

    Article  CAS  Google Scholar 

  6. T. D. B. Nguyen, Y.-K. Gho, W. C. Cho, K. S. Kang, S. U. Jeong, C. H. Kim, C.-S. Park and K.-K. Bae, Appl. Energy, 115, 531 (2014).

    Article  CAS  Google Scholar 

  7. J. L. Russell Jr., K. H. McCorkle, J. H. Norman, J. T. Porter II, T. S. Roemer, J. R. Schuster and R. S. Sharp, Proc. 1 st WHEC, Miami Beach, Fl., 1-3 March (1976).

    Google Scholar 

  8. L. C. Brown, G. E. Besenbruch, R. D. Lentsch, K. R. Schultz, J. F. Funk, P. S. Pickard, A. C. Marshall and S. K. Showalter. High efficiency generation of hydrogen fuels using nuclear power, GA-A24285 (2003).

    Book  Google Scholar 

  9. A. Le Duigou, J.-M. Borgard, B. Larousse, D. Doizi, R. Allen, B. C. Ewan, G. H. Priestman, R. Elder, R. Devonshire, V. Ramos, G. Cerri, C. Salvini, A. Giovannelli, G. De Maria, C. Corgnale, S. Brutti, M. Roeb, A. Noglik, P.-M. Rietbrock, S. Mohr, L. de Oliveira, N. Monnerie, M. Schmitz, C. Sattler, A. O. Martinez, D. de L. Manzano, J. C. Rojas and S. Dechelotte, Int. J. Hydrogen Energy, 32, 1516 (2007).

    Article  Google Scholar 

  10. K. Seiji, K. Shinji, H. Ryutaro, O. Kaoru, N. Mikihiro and N. Shinpichi, Int. J. Hydrogen Energy, 32, 489 (2007).

    Article  Google Scholar 

  11. F. Gelbard, J. C. Andazola, G. E. Naranjo, C. E. Velasquez and A. R. Reay, High pressure sulfuric acid decomposition experiments for the sulfur-iodine thermochemical cycle, SAND2005-5598 (2005).

    Google Scholar 

  12. W.-C. Cho, C.-S. Park, K.-S. Kang, C.-H. Kim and K.-K. Bae, Nucl. Eng. Des., 239, 501 (2009).

    Article  CAS  Google Scholar 

  13. P. Zhang, C. Z. Chen, L. J. Wang and J. M. Xu, Int. J. Hydrogen Energy, 35, 2883 (2010).

    Article  CAS  Google Scholar 

  14. S. Kasahara, S. Kubo, R. Hino, K. Onuki, M. Nomura and S. Nakao, Int. J. Hydrogen Energy, 32, 489 (2007).

    Article  CAS  Google Scholar 

  15. J. H. Norman, G. E. Besenbruch, L. C. Brown, D. R. O’Keefe and C. L. Allen, Thermochemical water-splitting cycle, bench-scale investigations, and process engineering, DOE/ET/26225-1 (1982).

    Google Scholar 

  16. S. Goldstein, J. M. Borgard and X. Vitart, Int. J. Hydrogen Energy, 30, 619 (2005).

    Article  CAS  Google Scholar 

  17. S. Kasahara, S. Kubo, K. Onuki and M. Nomura, Int. J. Hydrogen Energy, 29, 579 (2004).

    Article  CAS  Google Scholar 

  18. Y. Shin, K. Lee, Y. Kim, J. Chang, W. Cho and K. Bae, Int. J. Hydrogen Energy, 37, 16604 (2012).

    Article  CAS  Google Scholar 

  19. C. L. Yaws, Thermophysical properties of chemicals and hydrocarbons, 1st Ed., William Andrew (2008).

    Google Scholar 

  20. B. E. Poling, J. M. Prausnitz and J. P. O’Connell, The properties of gases and liquids, 5th Ed. McGraw-Hill (2000).

    Google Scholar 

  21. D. R. Lide, CRC handbook of chemistry and physics, 87th Ed. CRC Press (2006).

    Google Scholar 

  22. D. W. Green and R. H. Perry, Perry’s chemical engineers’ handbook, 8th Ed. McGraw-Hill (2007).

    Google Scholar 

  23. P. M. Mathias, Modeling the sulfur iodine cycle, Aspen building blocks and simulation models, Report to General Atomics and Sandia National Laboratory (2002).

    Google Scholar 

  24. P. Wang, A. Anderko, R. D. Springer and R. D. Young, J. Mol. Liq., 125, 37 (2006).

    Article  CAS  Google Scholar 

  25. M. C. Annesini, F. Gironi, M. Lanchi, L. Marrelli and M. Maschietti, Proc. ICheaP-8, Ischia, Italy, 24-27 June (2007).

    Google Scholar 

  26. M. K. Hadj-Kali, V. Gerbaud, J.-M. Borgard, O. Baudouin, P. Floquet, X. Joulia and P. Carles, Int. J. Hydrogen Energy, 34, 1696 (2009).

    Article  CAS  Google Scholar 

  27. J. E. Murphy and J. P. O’Conell, Fluid Phase Equilibr., 288, 99 (2010).

    Article  CAS  Google Scholar 

  28. S. Kasahara, Appendix A: Chemical, thermodynamic, and transport properties of pure compounds and solutions, in X. L. Yan and R. Hino Ed., Nuclear Hydrogen Production Handbook, CRC Press, 801 (2011).

    Google Scholar 

  29. Wikipedia, en.wikipedia.org/wiki/Hydrogen_iodide (Accessed June of 2015).

  30. Material Safety Data Sheet, www.msds.com (Accessed June of 2015).

  31. P. Patnaik, Handbook of inorganic chemicals, McGraw-Hill (2003).

    Google Scholar 

  32. KDB (Korea Thermophysical Properties Data Bank), www.cheric.org/research/kdb/ (Accessed June of 2015).

  33. NIST Chemistry Webbook, webbook.nist.gov (Accessed June of 2015).

  34. W. F. Giauque and R. Wiebe, J. Am. Chem. Soc., 51, 1441 (1929).

    Article  Google Scholar 

  35. S. Kubo, K. Yoshino, J. Takemoto, S. Kasahara, Y. Imai and K. Onuki, Density of Bunsen reaction solution and viscosity of polyhydriodic acid, JAEA-Technology, 2012-037 (2013). [In Japanese].

    Google Scholar 

  36. E. Nishikata, T. Ishii and T. Ohta, J. Chem. Eng. Data, 26, 254 (1981).

    Article  CAS  Google Scholar 

  37. T. M. Herrington, A. D. PethyBridge and M. G. Roffey, J. Chem. Eng. Data, 30, 264 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Won Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, B.H., Kang, KS. & Kang, J.W. Analysis of thermophysical property data of HI x components for I2 crystallizer design in sulfur-iodine process to produce hydrogen. Korean J. Chem. Eng. 33, 986–996 (2016). https://doi.org/10.1007/s11814-015-0212-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0212-x

Keywords

Navigation