Skip to main content
Log in

Effects of angle on the transport velocity in an inclined fluidized-bed

  • Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The transport velocity (u tri ) in an inclined fluidized-bed was investigated by varying the bed angle relative to the horizontal plane (0°–90°), the particle diameter (0.021–0.925mm), and density (1,272–4,503 kg/m3). This study employed the emptying time method to determine the transport velocity. The transport velocity for the vertical fluidized- bed (u tr90) was revealed to increase appreciably with the aspect ratio of the fluidized-bed. The transport velocity decreased as the bed angle increased. The ratio of the transport velocity to that for the vertical bed (u tri /u tr90) decreased with an increase in either the bed angle or the ratio of the particle diameter (d p ) to the critical particle diameter (d* p ), i.e., the maximum particle diameter at which the sum of the interparticle adhesion forces had a dominant influence on particle entrainment. Correlations for the transport velocity according to the bed angle relative to the horizontal plane were proposed successfully, based on the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Youn and J.-H. Choi, Korean Chem. Eng. Res., 52, 81 (2014).

    Article  CAS  Google Scholar 

  2. D. Kunii and O. Levenspiel, Fluidization engineering, 2nd Ed., ButterworthHeinemann, Boston (1991).

    Google Scholar 

  3. J. Yerushalmi and N.T. Cankurt, Powder Technol., 24, 187 (1979).

    Article  CAS  Google Scholar 

  4. Y. Li and M. Kwauk, in Fluidization, J. R. Grace and J.M. Matsen Eds., Plenum Press, New York, 537 (1980).

  5. A. A. Avidan and J. Yerushalmi, Powder Technol., 32, 223 (1982).

    Article  CAS  Google Scholar 

  6. B.C. Shin, Y. B. Koh and S.D. Kim, Korean Chem. Eng. Res., 20, 253 (1984).

    Google Scholar 

  7. G.Y. Han, G. S. Lee and S.D. Kim, Korean J. Chem. Eng., 2, 141 (1985).

    Article  CAS  Google Scholar 

  8. M. Horio, H. Ishii and M. Nishimuro, Powder Technol., 70, 229 (1992).

    Article  CAS  Google Scholar 

  9. D. C. Chesonis, G. E. Klinzing, Y.T. Shaah and C. G. Dassori, Ind. Eng. Chem. Res., 29, 1792 (1990).

    Article  Google Scholar 

  10. G. S. Lee and S.D. Kim, Powder Technol., 62, 207 (1990).

    Article  CAS  Google Scholar 

  11. J.F. Perales, T. Coll, M.F. Llop, L. Puigjaner, J. Arnaldos and J. Casal, in Circulating Fluidized Bed Technology III, P. Basu, M. Horio and M. Hasatani Eds., Pergamon Press, New York, 73 (1991).

  12. H. Ishii and M. Horio, Adv. Powder Technol., 2, 25 (1991).

    Article  Google Scholar 

  13. T. Hirama, H. Takeuchi and T. Chiba, Powder Technol., 70, 215 (1992).

    Article  CAS  Google Scholar 

  14. J. Adanez, L. F. de Diego and P. Gayan, Powder Technol., 77, 61 (1993).

    Article  CAS  Google Scholar 

  15. W. Namkung, S.W. Kim and S.D. Kim, Chem. Eng. J., 72, 245 (1999).

    Article  CAS  Google Scholar 

  16. K. Smolders and J. Baeyens, Powder Technol., 119, 269 (2001).

    Article  CAS  Google Scholar 

  17. N. Balasubramanian, C. Srinivasakannan and C.A. Basha, Adv. Powder. Technol., 16, 247 (2005).

    Article  CAS  Google Scholar 

  18. H. T. Bi and L. S. Fan, AIChE J., 38, 297 (1992).

    Article  CAS  Google Scholar 

  19. H.T. Bi and J. R. Grace, Int. J. Multiphase Flow, 21, 1229 (1995).

    Article  CAS  Google Scholar 

  20. B. Du, W. Warsito and L. S. Fan, Ind. Eng. Chem. Res., 45, 5384 (2006).

    Article  CAS  Google Scholar 

  21. D. Geldart, Powder Technol., 7, 285 (1973).

    Article  CAS  Google Scholar 

  22. W.C. Yang, in Handbook of Fluidization and Fluid-Particle Systems, W. C. Yang Eds., Marcel Dekker, New York, Chapter 1, 26 (2003).

    Google Scholar 

  23. S. H. Kang, Powder Technology, Hee Joong Dang, Seoul, Korea, 122 (1995).

    Google Scholar 

  24. A. Haider and O. Levenspiel, Powder Technol., 58, 63 (1989).

    Article  CAS  Google Scholar 

  25. X. X. Ma and K. Kato, Powder Technol., 95, 93 (1998).

    Article  CAS  Google Scholar 

  26. J. Li and K. Kato, Powder Technol., 118, 209 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Hoo Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurram, M.S., Choi, JH., Won, Y.S. et al. Effects of angle on the transport velocity in an inclined fluidized-bed. Korean J. Chem. Eng. 32, 2542–2549 (2015). https://doi.org/10.1007/s11814-015-0157-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0157-0

Keywords

Navigation