Skip to main content
Log in

Simulation of 1,3-butadiene extractive distillation process using N-methyl-2-pyrrolidone solvent

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A computer simulation was performed using a commercial process simulator, Aspen Plus, for NMP (Nmethyl-2-pyrrolidone) extractive distillation process to separate 1,3-butadiene from the C4 hydrocarbon mixtures. The Redlich-Kwong equation of state and NRTL activity coefficient model were used to calculate thermodynamic properties in the simulation of the extractive distillation process. Binary parameters of the NRTL model not provided in the simulator were estimated using the UNIFAC method. The simulation results of the 1,3-butadiene recovery from the C4 mixtures were in good agreement with the plant operation data. The process simulation showed that the material balances in the extractive distillation were successfully predicted for various NMP solvent flow rates. The results obtained in this work provided the optimum solvent rate and the reflux ratio for the NMP extractive distillation process to separate 1,3-butadiene from the C4 mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. C. White, Chem.-Biol. Interact., 166, 10 (2007).

    Article  CAS  Google Scholar 

  2. Z. Lei, R. Zhou and Z. Duan, Chem. Eng. J., 85, 379 (2002).

    Article  CAS  Google Scholar 

  3. J. Cho, Korean Chem. Eng. Res., 44, 129 (2006).

    CAS  Google Scholar 

  4. R. Cesar, C. Jose, V. Aurelio and V. D. Fernando, Ind. Eng. Chem. Res., 36, 4934 (1997).

    Article  Google Scholar 

  5. A. S. Al-jimaz, M. S. Fandary, K. H. A. E Alkhaldi, J. A. Al-Kandary and M. A. Fahim, Ind. Eng. Chem. Res., 46, 5686 (2007).

    Article  CAS  Google Scholar 

  6. B. Liao, Z. Lei, Z. Xu, R. Zhou and Z. Duam, Chem. Eng. J., 84, 3 (2001).

    Article  Google Scholar 

  7. G. D. Davis, E.C. Makin and C. H. Middlebrooks, Refining Petroleum for chemicals, 1st Ed., ACS, Missouri (1970).

    Google Scholar 

  8. S. Takao, Oil Gas, 77, 81 (1979).

    CAS  Google Scholar 

  9. A. S. Al-jimaz, M. S. Fandary, K. H. A. E Alkhaldi, J. A. Al-Kandary and M. A. Fahim, Ind. Eng. Chem. Res., 47, 4996 (2008).

    Article  Google Scholar 

  10. R.A. Meyers, Handbook of petrochemical production processes, 1st Ed., Mc Graw-Hill, New-York (2005).

    Google Scholar 

  11. J. V. Oliveira and A. M. C. Uller, Fluid Phase Equilib., 118, 133 (1996).

    Article  Google Scholar 

  12. K. Kindler and H. Puhl, US Patent, 6,337,429, B1 (2002).

  13. R. Saffari, F. Abbasi, F. Jalali-Farahani and N. Mostoufi, Proceed. 2005 Inter. Conf. Sim. Modeling, Thailand (2005).

  14. W. L. Luyben, Distillation design and control using Aspen™ simulation, Wiley-interscience, New Jersey (2006).

    Book  Google Scholar 

  15. J. H. Kim, D. H. Lee, S. K. Hong and S. J. Park, Korean Chem. Eng. Res., 46, 348 (2008).

    CAS  Google Scholar 

  16. R. Smith, Chemical Process Design, Mc Graw-Hill, New York (1995).

    Google Scholar 

  17. J. R. Bradford and H. G. Drickamer, AIChE J., 39, 319 (1943).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bomsock Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Kim, S. & Lee, B. Simulation of 1,3-butadiene extractive distillation process using N-methyl-2-pyrrolidone solvent. Korean J. Chem. Eng. 29, 1493–1499 (2012). https://doi.org/10.1007/s11814-012-0075-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0075-3

Key words

Navigation