Skip to main content
Log in

Wave motion in an ice covered ocean due to small oscillations of a submerged thin vertical plate

  • Published:
Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

In this paper we study the problem of generation of surface waves produced by small oscillation of a thin vertical plate submerged in deep ice covered ocean. Two particular problems are considered here viz, the problem of wave generation due to a) rolling of the plate and b) presence of a line source in front of a fixed vertical plate. The amplitude of radiated waves at large distances from the plate, for both problems, is obtained by a suitable application of Green’s integral theorem. These are then studied graphically for various values of the ice cover parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Banerjea S, Dolai DP, Mandal BN (1996). On waves due to rolling of a ship in water of finite depth. Archive of Applied Mechanics, 67(1), 35–43. DOI: 10.1007/BF00787137

    Article  MATH  Google Scholar 

  • Banerjea S, Dolai DP, Mandal BN (1997). On waves due to rolling of a plate submerged in finite depth water. Applied Mechanics and Engineering, 2(2), 285–297.

    MATH  Google Scholar 

  • Banerjea S, Dutta B (2008). On waves generated due to a line source in front of a vertical wall with a gap. Int. J. of Appl. Math. and Engng. Sci., 2, 99–106.

    MATH  Google Scholar 

  • Banerjea S, Kar CC (1998). On waves due to a line source in front of a vertical wall with a gap. Arcives of Mechanics, 50(5), 917–926.

    MATH  MathSciNet  Google Scholar 

  • Banerjea S, Rakshit P, Maiti P (2011). On the waves generated due to a line source present in an ocean with an ice cover and a small bottom undulation. Fluid Dynamic Research, 43(2), 384–410. DOI: 10.1088/0169-5983/43/2/025506

    Article  MathSciNet  Google Scholar 

  • Chakrabarti A, Ahluwalia, DS, Manam SR (2003). Surface water waves involving a vertical barrier in the presence of an ice-cover. International Journal of Engineering Science, 41(10), 1145–1162. DOI: 10.1016/S0020-7225(02)00375-0

    Article  MATH  MathSciNet  Google Scholar 

  • Chowdhury R (2004). Water wave scattering by obstacles and surface discontinuities. Ph.D. thesis, Calcutta University, Calcutta, India.

    Google Scholar 

  • Chung H, Fox C (2002). Calculation of wave-ice interaction using the Wiener-Hopf technique. New Zealand Journal of Mathematics, 31(1), 1–18.

    MathSciNet  Google Scholar 

  • Das D, Mandal BN (2007). Wave scattering by a horizontal circular cylinder in a two-layer fluid with an ice-cover. International Journal of Engineering Science, 45(10), 842–872. DOI: 10.1016/j.ijengsci.2007.05.008

    Article  MATH  MathSciNet  Google Scholar 

  • Evans DV (1970). Diffraction of surface waves by a submerged vertical plate. J. Fluid Mech., 40, 433–451.

    Article  MATH  Google Scholar 

  • Evans DV (1976). A note on the waves produced by small oscillations of a partially vertical plate. IMA Journal of Applied Mathematics, 17(2), 135–140. DOI: 10.1093/imamat/17.2.135

    Article  MATH  Google Scholar 

  • Fox C, Squire VA (1990). Reflection and transmission characteristics at the edge of shore fast sea ice. Journal of Geophysical Research Atmospheres, 95(C7), 629–639. DOI: 10.1029/JC095iC07p11629

    Article  Google Scholar 

  • Fox C, Squire VA (1991). Strain in shore fast ice due to incoming ocean waves and swell. Journal of Geophysical Research Atmospheres, 96(C3), 4531–4547. DOI: 10.1029/90JC02270

    Article  Google Scholar 

  • Fox C, Squire VA (1994). On the oblique reflection and transmission of ocean waves at shore fast sea-ice. Philosophical Transactions: Physical Sciences and Engineering, 347(1682), 185–218.

    Article  MATH  Google Scholar 

  • Kohout AL, Meylan MH (2008). An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone. Journal of Geophysical Research (Oceans), 113(C9). DOI: 10.1029/2007JC004434

    Google Scholar 

  • Landau LD, Lipschitz EM (1989). Fluid Mechanics. Pergamon Press, Oxford, UK.

    Google Scholar 

  • Linton CM, Chung H (2003). Reflection and transmission at the ocean/ sea-ice boundary. Wave Motion, 38(1), 43–52. DOI: 10.1016/S0165-2125(03)00003-9

    Article  MATH  MathSciNet  Google Scholar 

  • Maiti P, Mandal BN (2010). Wave scattering by a thin vertical barrier submerged beneath an ice-cover in deep water. Applied Ocean Research, 32(4), 367–373. DOI: 10.1016/j.apor.2010.07.001

    Article  Google Scholar 

  • Maiti P, Rakshit P, Banerjea S (2011). Scattering of water waves by thin vertical plate submerged below ice-cover surface. Applied Mathematics and Mechanics, 32(5), 635–644. DOI: 10.1007/s10483-011-1445-7

    Article  MATH  MathSciNet  Google Scholar 

  • Mandal BN (1991). On waves due to small oscillations of a vertical plate submerged in deep water. Journal of the Australian Mathematical Society, Series B: Applied Mathematics, 32(3), 296–303. DOI: 10.1017/S0334270000006871

    Article  MATH  Google Scholar 

  • Mandal BN, Chakrabarti A (2000). Water wave scattering by barriers. WIT Press, Southampton, UK.

    MATH  Google Scholar 

  • Meylan M, Squire VA (1994). The response of ice floes to ocean waves. Journal of Geophysical Research, 99(C1), 891–900. DOI: 10.1029/93JC02695

    Article  Google Scholar 

  • Newmann JN (1994). Wave effects on deformable bodies. Applied Ocean Research, 16(1), 45–101. DOI: 10.1016/0141-1187(94)90013-2

    Google Scholar 

  • Parsons NF, Martin PA (1992). Scattering of water waves by submerged plates using hypersingular integral equations. Applied Ocean Research, 14(5), 313–321. DOI: 10.1016/0141-1187(92)90035-I

    Article  Google Scholar 

  • Rakshit P, Banerjea S (2011). Effect of bottom undulation on the waves generated due to rolling of a plate. Journal Marine Science Application, 10(1), 7–16. DOI: 10.1007/s11804-011-1035-8

    Article  Google Scholar 

  • Squire VA (2007). Review of ocean waves and sea-ice revisited. Cold Regions Science and Technology, 49(2), 110–133. DOI: 10.1016/j.coldregions.2007.04.007

    Article  Google Scholar 

  • Torri T, Ohkubo H, Hayashi N, Matsuoka K, Kanai H (2000). Development of a very large floating structure. Nippon Steel Technical Report, 82, 23–34.

    Google Scholar 

  • Ursell F (1948). On the waves due to rolling of a ship. Quarterly Journal of Mechanics and Applied Mathematics, 1(1), 246–252. DOI: 10.1093/qjmam/1.1.246

    Article  MATH  MathSciNet  Google Scholar 

  • Wadhams P (1978). Wave decay in the mrginal ice zone measured from submarine. Deep-sea Research, 25, 23–40.

    Article  Google Scholar 

  • Wang CM, Tay ZY, Takagi K, Utsunomiya T (2010). Review of methods for mitigating hydroelastic response of VLFS under wave action. Applied Mechanics Reviews, 63(3), 030802-1–18. DOI: 10.1115/1.4001690

    Google Scholar 

  • Watanabe E, Utsunomiya T, Wang CM (2004). Hydroelastic analysis of pantoon-type VLFS: a literature survey. Engineering Structure, 26(2), 245–256. DOI: 10.1016/j.engstruct.2003.10.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudeshna Banerjea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiti, P., Rakshit, P. & Banerjea, S. Wave motion in an ice covered ocean due to small oscillations of a submerged thin vertical plate. J. Marine. Sci. Appl. 14, 355–365 (2015). https://doi.org/10.1007/s11804-015-1326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-015-1326-6

Keywords

Navigation