Skip to main content
Log in

Identification and Characterization of a Novel Alkali- and High Temperature-Tolerant Lipase (Lip4346) from a Macroalgae-Associated Bacterial Strain

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

A novel lipase gene (lip4346) encoding a primary translation product with 176 amino acids was screened from the genome fine mapping of the macroalgae-associated bacterial strain Microbulbifer sp. YNDZ01. Macroalgae were collected from the coast of the Halmahera Island of Indonesia. The lip4346 gene was cloned and heterologously expressed in Escherichia coli. The purified recombinant Lip4346 protein had a molecular mass of 19kDa, a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and a maximum enzyme activity of 31.2UmL−1. The optimal temperature and pH for the lipase activity of Lip4346 were 70°C and 10.0, respectively. Lip4346 was tolerant with a number of organic solvents and detergents, and was active toward triacylglycerols and p-nitrophenyl esters with short- and medium-chain lengths. The unique characteristics of Lip4346 indicate that it is a promising nonaqueous biocatalyst for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Fattah, Y. R., 2002. Optimization of ther mostable lipase production from a thermophilic Geobacillus sp. using Box-Behnken experimental design. Biotechnology Letters, 24: 1217–1222.

    Article  Google Scholar 

  • Ameri, A., Shakibaie, M., Khoobi, M., Faramarzi, M. A., and Forootanfar, H., 2020. Immobilization of thermoalkalophilic lipase from Bacillus atrophaeus FSHM2 on amine-modified graphene oxide nanostructures: Statistical optimization and its application for pentyl valerate synthesis. Applied Biochemistry and Biotechnology, 191(2): 579–604.

    Article  Google Scholar 

  • Balan, A., Ibrahim, D., Rahim, R. A., and Rashid, F. A. A., 2012. Purifification and characterization of a thermostable lipase from Geobacillus thermodenitrifificans IBRL-nra. Enzyme Research, 10: 1–7.

    Article  Google Scholar 

  • Blakesley, R. W., and Boezi, J. A., 1977. A new staining technique for proteins in polyacrylamide gels using coomassie brilliant blue G250. Analytical Biochemistry, 82(2): 580–582.

    Article  Google Scholar 

  • Bose, A., and Keharia, H., 2013. Production, characterization and applications of organic solvent tolerant lipase by Pseudomonas aeruginosa AAU2. Biocatalysis & Agricultural Biotechnology, 2(3): 255–266.

    Article  Google Scholar 

  • Cardenas, F., Castro, M. S. D., Sanchez-Montero, J. M., Sinisterra, J. V., Valmaseda, M., Elson, S. W., and Alvarez, E., 2001. Novel microbial lipases: Catalytic activity in reactions in organic media. Enzyme and Microbial Technology, 28(2–3): 145–154.

    Article  Google Scholar 

  • Desnuelle, P., 1972. The lipases. The Enzymes, 7(19): 575–616.

    Article  Google Scholar 

  • Doukyua, N., and Ogino, H., 2010. Organic solvent-tolerant enzymes. Biochemical Engineering Journal, 48(9): 270–282.

    Article  Google Scholar 

  • Egan, S., Thomas, T., and Kjelleberg, S., 2008. Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Current Opinion in Microbiology, 11(3): 219–225.

    Article  Google Scholar 

  • Emtenani, S., Asoodeh, A., and Emtenania, S., 2013. Molecular cloning of a thermo-alkaliphilic lipase from Bacillus subtilis DR8806: Expression and biochemical characterization. Process Biochemistry, 48(11): 1679–1685.

    Article  Google Scholar 

  • Gaoa, X. G., Cao, S. G., and Zhang, K. C., 2000. Production, properties and application to nonaqueous enzymatic catalysis of lipase from a newly isolated Pseudomonas strain. Enzyme and Microbial Technology, 27(1–2): 74–82.

    Article  Google Scholar 

  • Golaki, B. P., Aminzadeh, S., Karkhane, A. A., Yakhchali, B., Farrokh, P., and Khaleghinejad, S. H., 2015. Cloning, expression, purification, and characterization of lipase 3646 from thermophilic indigenous Cohnella sp. A01. Protein Expression and Purification, 109: 120–126.

    Article  Google Scholar 

  • Haki, G. D., and Rakshit, S. K., 2003. Developments in industrially important thermostable enzymes: A review. Bioresource Technology, 89(1): 17–34.

    Article  Google Scholar 

  • Houde, A., Kademi, A., and Leblanc, D., 2004. Lipases and their industrial applications: An overview. Applied Biochemistry and Biotechnology, 118(1–3): 155–170.

    Article  Google Scholar 

  • Li, H., and Zhang, X., 2005. Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1. Protein Expression & Purification, 42(1): 153–159.

    Article  Google Scholar 

  • Li, J., and Liu, X., 2017. Identification and characterization of a novel thermophilic, organic solvent stable lipase of Bacillus from a hot spring. Lipids, 52(7): 619–627.

    Article  Google Scholar 

  • Li, Q. S., Li, G. Q., Yu, S. S., Zhang, Z. M., Ma, F. Q., and Feng, Y., 2011. Ringopening polymerization of epsilon-caprolactone catalyzed by a novel thermophilic lipase from Fervidobacterium nodosum. Process Biochemistry, 46(1): 253–257.

    Article  Google Scholar 

  • Liu, C. H., Lu, W. B., and Chang, J. S., 2006. Optimizing lipase production of Burkholderia sp. by response surface methodology. Process Biochemistry, 41(9): 1940–1944.

    Article  Google Scholar 

  • Lotrakul, P., and Dharmsthiti, S., 1997. Purification and characterization of lipase from Aeromonas sobria LP004. Journal of Biotechnology, 54(2): 113–120.

    Article  Google Scholar 

  • Mander, P., Cho, S. S., Simkhada, J. R., Choi, Y. H., Park, D. J., and Yoo, J. C., 2012. An organic solvent-tolerant lipase from Streptomyces sp. CS133 for enzymatic transesterification of vegetable oils in organic media. Process Biochemistry, 47(4): 635–642.

    Article  Google Scholar 

  • Masomian, M., Rahman, R. N. Z. R. A., Salleh, A. B., and Basri, M., 2012. A new thermostable and organic solvent-tolerant lipase from Aneurinibacillus thermoaerophilus strain HZ. Process Biochemistry, 48(1): 169–175.

    Article  Google Scholar 

  • Nawani, N., and Kaur, J., 2000. Purification, characterization and thermostability of lipase from a thermophilic Bacillus sp. J33. Molecular and Cellular Biochemistry, 206(1–2): 91–96.

    Article  Google Scholar 

  • Nehal, F., Sahnoun, M., Dab, A., Sebaihia, M., Bejar, S., and Jaouadi, B., 2019. Production optimization, characterization, and covalent immobilization of a thermophilic Serratia rubidaea lipase isolated from an Algerian oil waste. Molecular Biology Reports, 46(3): 3167–3181.

    Article  Google Scholar 

  • Pencreach, G., and Baratti, J. C., 1996. Hydrolysis of p-nitrophenyl palmitate in n-heptane by the Pseudomonas cepacia lipase: A simple test for the determination of lipase activity in organic media. Enzyme and Microbial Technology, 18(6): 417–422.

    Article  Google Scholar 

  • Rajesh, K. S., Aradhana, D., Kalpana, S., Anshuman, S., and Enketeswara, S., 2019. Characterization of novel metagenomicderived lipase from Indian hot spring. International Microbiology, 23(3): 233–240.

    Google Scholar 

  • Riera, M., Pages, M., Issinger, O. G., and Guerra, B., 2003. Purification and characterization of recombinant protein kinase CK2 from Zea mays expressed in Escherichia coli. Protein Expression & Purification, 29(1): 24–32.

    Article  Google Scholar 

  • Ruiz, C., Blanco, A., Pastor, F. I. J., and Diaz, P., 2002. Analysis of Bacillus megaterium lipolytic system and cloning of LipA, a novel subfamily I.4 bacterial lipase. Fems Microbiology Letters, 217(2): 263–267.

    Article  Google Scholar 

  • Sharma, A., Meena, K. R., and Kanwar, S. S., 2018. Molecular characterization and bioinformatics studies of a lipase from Bacillus thermoamylovorans BHK67. International Journal of Biological Macromolecules, 107(B): 2131–2140.

    Article  Google Scholar 

  • Sharma, A., Sharma, T., Meena, K. R., and Kanwar, S. S., 2017. Physical adsorption of lipase onto mesoporous silica. International Journal of Current Advanced Research, 6(5): 3837–3841.

    Article  Google Scholar 

  • Sharma, D., Sharma, B., and Shukla, A. K., 2011. Biotechnological approach of microbial lipase: A review. Biotechnology, 10(1): 23–40.

    Article  Google Scholar 

  • Sharma, S., and Kanwar, S. S., 2014. Organic solvent tolerant lipases and applications. The Scientific World Journal, 2014(10): 1–15.

    Google Scholar 

  • Shao, H., Hu, X., Sun, L., and Zhou, W., 2019. Gene cloning, expression in E. coli, and in vitro refolding of a lipase from Proteus sp. NH 2–2 and its application for biodiesel production. Biotechnology Letters, 41(1): 159–169.

    Article  Google Scholar 

  • Shu, Z. Y., Wu, J., Cheng, L. X., Chen, D., Jiang, Y. M., and Li, X., 2012. Production and characteristics of the whole-cell lipase from organic solvent tolerant Burkholderia sp. ZYB002. Applied Biochemistry and Biotechnology, 166(3): 536–548.

    Article  Google Scholar 

  • Singh, A. K., and Mukhopadhyay, M., 2012. Overview of fungal lipase: A review. Applied Biochemistry and Biotechnology, 166(2): 486–520.

    Article  Google Scholar 

  • Su, H., Mai, Z., and Yang, J., 2016. Cloning, expression, and characterization of a cold-active and organic solvent-tolerant lipase from Aeromicrobium sp. SCSIO 25071. Journal of Microbiology and Biotechnology, 26(6): 1067–1076.

    Article  Google Scholar 

  • Turati, D. F. M., Almeida, A. F., Terrone, C. C., Nascimento, J. M. F., Terrasan, C. R. F., Fernandez-Lorente, G., Pessela, B. C., Guisan, J. M., and Carmona, E. C., 2019. Thermotolerant lipase from Penicillium sp. section Gracilenta CBMAI 1583: Effect of carbon sources on enzyme production, biochemical properties of crude and purified enzyme and substrate specificity. Biocatalysis & Agricultural Biotechnology, 17(22): 15–24.

    Article  Google Scholar 

  • Verger, R., and DeHaas, G. H., 1976. Interfacial enzyme kinetics of lipolysis. Annual Review Biophysics & Bioenginering, 5(1): 77–117.

    Article  Google Scholar 

  • Wang, Y., Ma, R., Li, S., Gong, M., Yao, B., Bai, Y., and Gu, J., 2018. An alkaline and surfactant-tolerant lipase from Trichoderma lentiforme ACCC30425 with high application potential in the detergent industry. AMB Express, 8(1): 95–106.

    Article  Google Scholar 

  • Yu, X. W., Tan, N. J., Xiao, R., and Xu, Y., 2012. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: Increased thermostability and altered acyl chain length specificity. PLoS One, 7(10): 346–388.

    Google Scholar 

  • Zheng, X., Chu, X., Zhang, W., Wu, N., and Fan, Y., 2011. A novel cold-adapted lipase from Acinetobacter sp. XMZ-26: Gene cloning and characterisation. Applied Microbiology and Biotechnology, 90(3): 971–980.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the China Ocean Mineral Resources R & D Association project (No. DY 135-B2-11), and the China-ASEAN Maritime Cooperation Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Gui, Y., Li, J. et al. Identification and Characterization of a Novel Alkali- and High Temperature-Tolerant Lipase (Lip4346) from a Macroalgae-Associated Bacterial Strain. J. Ocean Univ. China 20, 181–188 (2021). https://doi.org/10.1007/s11802-021-4506-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-021-4506-9

Key words

Navigation