Skip to main content
Log in

Geochemistry and Petrogenesis of Volcanic Rocks from the Continent-Ocean Transition Zone in Northern South China Sea and Their Tectonic Implications

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Miocene-Pliocene (22–5 Myr) volcanism and associated seamounts are abundant in the continent-ocean transition (COT) zone in the margin of the north South China Sea (SCS). The petrogenesis of volcanic rocks from these seamounts and regional tectonic evolution of COT zone are poorly known. In this paper, we obtained whole-rock major and trace element compositions and Sr-Nd-Pb isotopic data for these volcanic rocks from the Puyuan and Beipo seamounts within COT zone, in northeastern SCS. Based on the geochemical analyses, the volcanic rocks are classified as alkaline ocean island basalts (OIB) and enriched mid-ocean ridge basalts (E-MORB). The OIBs from the Puyuan seamount are alkaline trachybasalts and tephrites that show enrichment of the light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and more radiogenic Sr-Nd isotopic compositions, and have significant ‘Dupal isotopic anomaly’. In contrast, the E-MORBs from the Beipo seamount are tholeiitic basalts that have less enrichment in LREE and less radiogenic Sr-Nd isotopic compositions than the counterparts from the Puyuan seamount. Petrological and geochemical differences between the OIBs and MORBs from these two seamounts can be explained by different mantle sources and tectonic evolution stages of the COT zone. Syn-spreading OIB type basalts from the Puyuan seamount were derived from an isotopically ‘enriched’, and garnet facies-dominated pyroxenitic mantle transferred by the Hainan mantle plume. In contrast, post-spreading E-MORB type basalts from the Beipo seamount are considered to be derived from the melting of isotopically ‘depleted’ pyroxenite mantle triggered by lithosphere bending and subsequent post-rifting at the lower continental slope of the northern margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bédard, J., 1999. Petrogenesis of boninites from the Betts Cove ophiolite, Newfoundland, Canada: Identification of subducted source components. Journal of Petrology, 40 (12): 1853–1889.

    Google Scholar 

  • Baker, M., Hirschmann, M., Ghiorso, M., and Stolper, E.,1995. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature, 375 (6529): 308–311, DOI: https://doi.org/10.1038/375308a0.

    Google Scholar 

  • Briais, A., Patriat, P., and Tapponnier, P., 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98 (B4): 6299–6328, DOI: https://doi.org/10.1029/92JB02280.

    Google Scholar 

  • Eagles, G., Pérez-Díaz, L., and Scarselli, N., 2015. Getting over continent ocean boundaries. Earth-Science Reviews, 151: 244–265, DOI: https://doi.org/10.1016/j.earscirev.2015.10.009.

    Google Scholar 

  • Expedition 349 Scientists, 2014. Opening of the South China Sea and its implications for Southeast Asian tectonics, climates, and deep mantle processes since the late Mesozoic. International Ocean Discovery Program Expedition 349 Preliminary Report. https://doi.org/10.14379/iodp.pr.349.2014.

  • Fan, W. M., Guo, F., Wang, Y. J., and Lin, G., 2003. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China. Journal of Volcanology and Geothermal Research, 121 (1): 115–135, DOI: https://doi.org/10.1016/S0377-0273(02)00415-8.

    Google Scholar 

  • Floyd, P., and Winchester, J., 1975. Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary Science Letters, 27 (2): 211–218, DOI: https://doi.org/10.1016/0012-821X(75)90031-X.

    Google Scholar 

  • Franke, D., Barckhausen, U., Baristeas, N., Engels, M., Ladage, S., Lutz, R., Montano, J., Pellejera, N., Ramos, E., and Schnabel, M., 2011. The continent-ocean transition at the southeastern margin of the South China Sea. Marine and Petroleum Geology, 28 (6): 1187–1204.

    Google Scholar 

  • Frey, F., Green, D., and Roy, S., 1978. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology, 19 (3): 463–513, DOI: https://doi.org/10.1093/petrology/19.3.463.

    Google Scholar 

  • Gale, A., Dalton, C. A., Langmuir, C. H., Sun, Y. J., and Schilling, J. G., 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14 (3): 489–518, DOI: https://doi.org/10.1029/2012GC004334.

    Google Scholar 

  • Gao, J., Wu, S., McIntosh, K., Mi, L., Liu, Z., and Spence, G., 2016. Crustal structure and extension mode in the northwestern margin of the South China Sea. Geochemistry, Geophysics, Geosystems, 17 (6): 2143–2167.

    Google Scholar 

  • Gao, J., Wu, S., McIntosh, K., Mi, L., Yao, B., Chen, Z., and Jia, L., 2015. The continent-ocean transition at the mid-northern margin of the South China Sea. Tectonophysics, 654: 1–19.

    Google Scholar 

  • Hamelin, B., and Allègre, C. J., 1985. Large-scale regional units in the depleted upper mantle revealed by an isotope study of the South-West Indian Ridge. Nature, 315 (6016): 196–199, DOI: https://doi.org/10.1038/315196a0.

    Google Scholar 

  • Han, J., Xiong, X., and Zhu, Z., 2009. Geochemistry of late-Cenozoic basalts from Leigiong area: The origin of EM2 and the contribution from sub-continental lithosphere mantle. Acta Petrologica Sinica, 25 (12): 3208–3220, DOI: https://doi.org/10.1007/BF02943552 (in Chinese with English abstract).

    Google Scholar 

  • Hart, S. R., 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309: 753–757, DOI: https://doi.org/10.1038/309753a0.

    Google Scholar 

  • Hart, S. R., Hauri, E., Oschmann, L., and Whitehead, J. A., 1992. Mantle plumes and entrainment: Isotopic evidence. Science, 256 (5056): 517–520, DOI: https://doi.org/10.1126/science.256.5056.517.

    Google Scholar 

  • Herzberg, C., and Asimow, P. D., 2008. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochemistry, Geophysics, Geosystems, 9 (9): 269–283, DOI: https://doi.org/10.1029/2008GC002057.

    Google Scholar 

  • Hoang, N., and Flower, M. F. J., 1998. Petrogenesis of Cenozoic basalts from Vietnam: Implication for origins of a ‘diffuse igneous province’. Journal of Petrology, 39 (3): 369–395.

    Google Scholar 

  • Hoang, N., Flower, M. F. J., and Carlson, R. W., 1996. Major, trace element, and isotopic compositions of Vietnamese basalts: Interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochimica et Cosmochimica Acta, 60 (22): 4329–4351, DOI: https://doi.org/10.1016/S0016-7037(96)00247-5.

    Google Scholar 

  • Hoang, N., Flower, M. F. J., Chí, C. T., Xuân, P. T., Quý, H. V., and Son, T. T., 2013. Collision-induced basalt eruptions at Pleiku and Buôn Mê Thuôt, south-central Viet Nam. Journal of Geodynamics, 69: 65–83, DOI: https://doi.org/10.1016/j.jog.2012.03.012.

    Google Scholar 

  • Huang, J., and Zhao, D., 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research: Solid Earth, 111 (B9): B09305, DOI: https://doi.org/10.1029/2005JB004066.

    Google Scholar 

  • Hsu, S. K., Yeh, Y., Doo, W. B., and Tsai, C. H., 2004. New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Marine Geophysical Research, 25 (1–2): 29–44, DOI: https://doi.org/10.1007/s11001-005-0731-7.

    Google Scholar 

  • Irvine, T., and Baragar, W., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8 (5): 523–548, DOI: https://doi.org/10.1139/e71-055.

    Google Scholar 

  • Jiang, Y. H., Jiang, S. Y., Ling, H. F., and Dai, B. Z., 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, East Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth and Planetary Science Letters, 241 (3): 617–633.

    Google Scholar 

  • Lebedev, S., and Nolet, G., 2003. Upper mantle beneath Southeast Asia from S velocity tomography. Journal of Geophysical Research: Solid Earth, 108 (B1): 2048, DOI: https://doi.org/10.1029/2000JB000073.

    Google Scholar 

  • Lei, J., Zhao, D., Steinberger, B., Wu, B., Shen, F., and Li, Z., 2009. New seismic constraints on the upper mantle structure of the Hainan plume. Physics of the Earth and Planetary Interiors, 173 (1–2): 33–50, DOI: https://doi.org/10.1016/j.pepi.2008.10.013.

    Google Scholar 

  • Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M. J., Sabine, P. A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A. R., and Zanettin, B., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific, Oxford, 1–193.

    Google Scholar 

  • Lester, R., van Avendonk, H. J., McIntosh, K., Lavier, L., Liu, C. S., Wang, T., and Wu, F., 2014. Rifting and magmatism in the northeastern South China Sea from wide-angle tomography and seismic reflection imaging. Journal of Geophysical Research: Solid Earth, 119 (3): 2305–2323.

    Google Scholar 

  • Li, C. F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y., Zhao, X., Liu, Q., Kulhanek, D. K., and Wang, J., 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15 (12): 4958–4983, DOI: https://doi.org/10.1002/2014GC005567.

    Google Scholar 

  • Li, N., Yan, Q., Chen, Z., and Shi, X., 2013. Geochemistry and petrogenesis of Quaternary volcanism from the islets in the eastern Beibu Gulf: Evidence for Hainan plume. Acta Oceanologica Sinica, 32 (12): 40–49.

    Google Scholar 

  • Lloyd, F., Arima, M., and Edgar, A., 1985. Partial melting of a phlogopite-clinopyroxenite nodule from South-west Uganda: An experimental study bearing on the origin of highly potassic continental rift volcanics. Contributions to Mineralogy and Petrology, 91 (4): 321–329.

    Google Scholar 

  • Lüdmann, T., and Wong, H. K., 1999. Neotectonic regime on the passive continental margin of the northern South China Sea. Tectonophysics, 311 (1–4): 113–138.

    Google Scholar 

  • Lüdmann, T., Wong, H. K., and Wang, P., 2001. Plio—Quaternary sedimentation processes and neotectonics of the northern continental margin of the South China Sea. Marine Geology, 172 (3–4): 331–358, DOI: https://doi.org/10.1016/S0025-3227(00)00129-8.

    Google Scholar 

  • McIntosh, K., van Avendonk, H., Lavier, L., Lester, W. R., Eakin, D., Wu, F., Liu, C. S., and Lee, C. S., 2013. Inversion of a hyper-extended rifted margin in the southern central range of Taiwan. Geology, 41 (8): 871–874, DOI: https://doi.org/10.1130/G34402.1.

    Google Scholar 

  • Minshull, T. A., 2009. Geophysical characterisation of the ocean-continent transition at magma-poor rifted margins. Comptes Rendus Geoscience, 341 (5): 382–393.

    Google Scholar 

  • Mjelde, R., Raum, T., Murai, Y., and Takanami, T., 2007. Continent-ocean-transitions: Review, and a new tectono-magmatic model of the Vering Plateau, NE Atlantic. Journal of Geodynamics, 43 (3): 374–392, DOI: https://doi.org/10.1016/j.jog.2006.09.013.

    Google Scholar 

  • Qi, L., Jing, H., and Gregoire, D. C., 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51 (3): 507–513, DOI: https://doi.org/10.1016/S0039-9140(99)00318-5.

    Google Scholar 

  • Richard, P., Shimizu, N., and Allegre, C., 1976. 143Nd/146Nd, a natural tracer: An application to oceanic basalts. Earth and Planetary Science Letters, 31 (2): 269–278.

    Google Scholar 

  • Sibuet, J. C., Yeh, Y. C., and Lee, C. S., 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98–119.

    Google Scholar 

  • Smith, R. E., and Smith, S. E., 1976. Comments on the use of Ti, Zr, Y, Sr, K, P and Nb in classification of basaltic magmas. Earth and Planetary Science Letters, 32 (2): 114–120.

    Google Scholar 

  • Sun, S. S., and McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, Special Publications, 42 (1): 313–345.

    Google Scholar 

  • Sun, Z., Zhou, D., Zhong, Z., Xia, B., Qiu, X., Zeng, Z., and Jiang, J., 2006. Research on the dynamics of the South China Sea opening: Evidence from analogue modeling. Science in China Series D: Earth Sciences, 49 (10): 1053–1069.

    Google Scholar 

  • Taylor, B., and Hayes, D. E., 1980. The tectonic evolution of the South China Basin. The tectonic and Geologic Evolution of Southeast Asian Seas and Islands, 23: 89–104.

    Google Scholar 

  • Taylor, B., and Hayes, D. E., 1983. Origin and history of the South China Sea Basin. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Part 2: 23–56.

  • Tian, Z. X., Yan, Y., Huang, C. Y., Zhang, X. C., Liu, H. Q., Yu, M. M., Yao, D., and Dilek, Y., 2019. Geochemistry and geochronology of the accreted mafic rocks from the Hengchun Peninsula, southern Taiwan: Origin and tectonic implications. Journal of Geophysical Research: Solid Earth, 124 (3): 2469–2491, DOI: https://doi.org/10.1029/2018JB016562.

    Google Scholar 

  • Todt, W., Cliff, R., Hanser, A., and Hofmann, A., 1996. Evaluation of a 202Pb-205Pb double spike for high-precision lead isotope analysis. Washington D. C. American Geophysical Union Geophysical Monograph Series, 95: 429–437.

    Google Scholar 

  • Tu, K., Flower, M. F. J., Carlson, R. W., Xie, G., Chen, C. Y., and Zhang, M., 1992. Magmatism in the South China Basin: 1. Isotopic and trace-element evidence for an endogenous Dupal mantle component. Chemical Geology, 97 (1–2): 47–63.

    Google Scholar 

  • Tu, K., Flower, M. F. J., Carlson, R. W., Zhang, M., and Xie, G., 1991. Sr, Nd, and Pb isotopic compositions of Hainan basalts (South China): Implications for a subcontinental lithosphere Dupal source. Geology, 19 (6): 567–569.

    Google Scholar 

  • Wang, K. L., Lo, Y. M., Chung, S. L., Lo, C. H., Hsu, S. K., Yang, H. J., and Shinjo, R., 2012a. Age and geochemical features of dredged basalts from offshore SW Taiwan: The coincidence of intra-plate magmatism with the spreading South China Sea. Terrestrial Atmospheric & Oceanic Sciences, 23 (6): 657–669, DOI: https://doi.org/10.3319/TAO.2012.07.06.01(TT).

    Google Scholar 

  • Wang, Q., Wyman, D. A., Xu, J. F., Zhao, Z. H., Jian, P., Xiong, X. L., Bao, Z. W., Li, C. F., and Bai, Z. H., 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong Area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 89 (3): 424–446, DOI: https://doi.org/10.1016/j.lithos.2005.12.010.

    Google Scholar 

  • Wang, X. C., Li, Z. X., Li, X. H., Li, J., Liu, Y., Long, W. G., Zhou, J. B., and Wang, F., 2012b. Temperature, pressure, and composition of the mantle source region of late Cenozoic basalts in Hainan Island, SE Asia: A consequence of a young thermal mantle plume close to subduction zones? Journal of Petrology, 53 (1): 177–233, DOI: https://doi.org/10.1093/petrology/egr061.

    Google Scholar 

  • Wang, X. C., Li, Z. X., Li, X. H., Li, J., Xu, Y. G., and Li, X. H., 2013. Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: Implications for potential linkages between plume and plate tectonics. Earth and Planetary Science Letters, 377: 248–259, DOI: https://doi.org/10.1016/j.epsl.2013.07.003.

    Google Scholar 

  • Workman, R. K., and Hart, S. R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231 (1–2): 53–72, DOI: https://doi.org/10.1016/j.epsl.2004.12.005.

    Google Scholar 

  • Wu, S., Gao, J., Zhao, S., Lüdmann, T., Chen, D., and Spence, G., 2014. Post-rift uplift and focused fluid flow in the passive margin of northern South China Sea. Tectonophysics, 615: 27–39, DOI: https://doi.org/10.1016/j.tecto.2013.12.013.

    Google Scholar 

  • Xia, B., Zhang, Y., Cui, X., Liu, B., Xie, J., Zhang, S., and Lin, G., 2006. Understanding of the geological and geodynamic controls on the formation of the South China Sea: A numerical modelling approach. Journal of Geodynamics, 42 (1–3): 63–84, DOI: https://doi.org/10.1016/j.jog.2006.06.001.

    Google Scholar 

  • Yan, Q., and Shi, X., 2007. Hainan mantle plume and the formation and evolution of the South China Sea. Geological Journal of China Universities, 13 (2): 311–322 (in Chinese with English abstract).

    Google Scholar 

  • Yan, Q., Shi, X., and Castillo, P. R., 2014. The late Mesozoic—Cenozoic tectonic evolution of the South China Sea: A petrologic perspective. Journal of Asian Earth Sciences, 85 (2): 178–201, DOI: https://doi.org/10.1016/j.jseaes.2014.02.005.

    Google Scholar 

  • Yan, Q., Castillo, P., Shi, X., Wang, L., Liao, L., and Ren, J., 2015. Geochemistry and petrogenesis of volcanic rocks from Daimao seamount (South China Sea) and their tectonic implications. Lithos, 218: 117–126.

    Google Scholar 

  • Yan, Q., Shi, X., Wang, K., Bu, W., and Xiao, L., 2008. Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea. Science in China Series D: Earth Sciences, 51 (4): 550–566.

    Google Scholar 

  • Yang, F., Huang, X. L., Xu, Y. G., and He, P. L., 2019. Plumeridge interaction in the South China Sea: Thermometric evidence from Hole U1431E of IODP Expedition 349. Lithos, 324–325: 466–478, DOI: https://doi.org/10.1016/j.lithos.2018.11.031.

    Google Scholar 

  • Yang, Z. F., and Zhou, J. H., 2013. Can we identify source lithology of basalt? Scientific Reports, 3: 1856, DOI: https://doi.org/10.1038/srep01856.

    Google Scholar 

  • Zindler, A., and Hart, S., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493–571, DOI: https://doi.org/10.1016/0040-1951(82)90125-1.

    Google Scholar 

  • Zhang, G. L., Chen, L. H., Jackson, M. G., and Hofmann, A. W., 2017. Evolution of carbonated melt to alkali basalt in the South China Sea. Nature Geoscience, 10 (3): 229–235.

    Google Scholar 

  • Zhang, G. L., Sun, W. D., and Seward, G., 2018. Mantle source and magmatic evolution of the dying spreading ridge in the South China Sea. Geochemistry, Geophysics, Geosystems, 19 (11): 4385–4399, DOI: https://doi.org/10.1029/2018GC007570.

    Google Scholar 

  • Zhang, H. F., Sun, M., Zhou, X. H., Fan, W. M., Zhai, M. G., and Yin, J. F., 2002. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology, 144 (2): 241–254.

    Google Scholar 

  • Zhang, N., and Li, Z. X., 2018. Formation of mantle ‘lone plumes’ in the global downwelling zone-A multiscale modelling of subduction-controlled plume generation beneath the South China Sea. Tectonophysics, 723: 1–13.

    Google Scholar 

  • Zhao, D., 2007. Seismic images under 60 hotspots: Search for mantle plumes. Gondwana Research, 12 (4): 335–355.

    Google Scholar 

  • Zhao, M., He, E., Sibuet, J. C., Sun, L., Qiu, X., Tan, P., and Wang, J., 2018. Postseafloor spreading volcanism in the central east South China Sea and its formation through an extremely thin oceanic crust. Geochemistry, Geophysics, Geosystems, 19 (3): 621–641, DOI: https://doi.org/10.1002/2017GC007034.

    Google Scholar 

  • Zhu, J., Qiu, X., Kopp, H., Xu, H., Sun, Z., Ruan, A., Sun, J., and Wei, X., 2012. Shallow anatomy of a continent-ocean transition zone in the northern South China Sea from multichannel seismic data. Tectonophysics, 554: 18–29.

    Google Scholar 

  • Zou, H., and Fan, Q., 2010. U-Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle end-member and the dynamics of melting beneath Hainan Island. Lithos, 116 (1–2): 145–152, DOI: https://doi.org/10.1016/j.lithos.2010.01.010.

    Google Scholar 

Download references

Acknowledgements

This study was jointly supported by the National Key R&D Program of China (No. 2018YFC0309802), the 13th Five- Year Plan Program of the China Ocean Mineral Resour- ces Research and Development Association Research (No. DY135-S2-2-08), the Soft Science Project of Shandong Province Key Research and Development Plan (No. 2019 RZA02002), the China Postdoctoral Science Foundation (No. 2017M610403), and the Taishan Scholar Project Funding (No. tspd20161007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Yang, Y., Yu, H. et al. Geochemistry and Petrogenesis of Volcanic Rocks from the Continent-Ocean Transition Zone in Northern South China Sea and Their Tectonic Implications. J. Ocean Univ. China 19, 1051–1061 (2020). https://doi.org/10.1007/s11802-020-4231-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-020-4231-9

Key words

Navigation