Skip to main content
Log in

NAND gate with quantum dot-semiconductor optical amplifiers-based Mach-Zehnder interferometer

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

The NAND operation at 250 Gbit/s based on quantum dot-semiconductor optical amplifiers (QD-SOAs) is modeled. By solving the rate equations of SOAs in the form of a Mach-Zehnder interferometer (MZI), the performance of NAND gate is numerically investigated. The model takes the effects of amplified spontaneous emission (ASE) and the input pulse energy on the system’s quality factor into account. Results show that NAND gate in QD-SOA-MZI based structure is feasible at 250 Gbit/s with a proper quality factor. The decrease in quality factor is predicted for high spontaneous emission factor (N SP). For an ideal amplifier (N SP = 2), the Q-factor is 17.8 for 30 dB gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers, World Scientific, New York, 2006.

    Book  Google Scholar 

  2. T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard and R. Dall’Ara, Electronics Letter 35, 1650 (1999).

    Article  Google Scholar 

  3. C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann and R. Dall’Ara, IEEE Photonics Technology Letters 12, 834 (2000).

    Article  ADS  Google Scholar 

  4. T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingtand, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt and M. Renaud, Electronics Letter 36, 1863 (2000).

    Article  Google Scholar 

  5. H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilliand and N. K. Dutta, Electronics Letter 38, 1271 (2002).

    Article  Google Scholar 

  6. F. Ginovart and J. C. Simon, Optics A Pure Applied Optics 4, 283 (2002).

    Article  ADS  Google Scholar 

  7. M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe and H. Ishikawa, Meas. Sci. Technol. 13, 1683 (2002).

    Article  ADS  Google Scholar 

  8. H. Sun, Q. Wang, H. Dong and N. K. Dutta, Microwave and Optical Technology Letters 48, 29 (2006).

    Article  Google Scholar 

  9. S. Ma, Z. Chen, H. Sun and N. K. Dutta, Optics Express 18, 6417 (2010).

    Article  ADS  Google Scholar 

  10. A. Kotb, S. Ma, Z. Chen, N. K. Dutta and G. Said, Optics Communications 284, 5798 (2011).

    Article  ADS  Google Scholar 

  11. A. Kotb and J. Maeda, Optoelectronics Letters 8, 437 (2012).

    Article  ADS  Google Scholar 

  12. A. Kotb, S. Ma, Z. Chen, N. K. Dutta and G. Said, Optics Communications 283, 4707 (2010).

    Article  ADS  Google Scholar 

  13. E. Dimitriadou and K. Zoiros, Optics and Laser Technology 45, 79 (2013).

    Article  ADS  Google Scholar 

  14. A. Rostami, H. Nejad, R. Qartavol and H. Saghai, IEEE J. Quantum Electronics 46, 354 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer Kotb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotb, A. NAND gate with quantum dot-semiconductor optical amplifiers-based Mach-Zehnder interferometer. Optoelectron. Lett. 9, 89–92 (2013). https://doi.org/10.1007/s11801-013-2381-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-013-2381-3

Keywords

Navigation