Skip to main content
Log in

Revealing the GHG reduction potential of emerging biomass-based CO2 utilization with an iron cycle system

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

CO2 utilization becomes a promising solution for reducing anthropogenic greenhouse gas (GHG) emissions. Biomass-based CO2 utilization (BCU) even has the potential to generate negative emissions, but the corresponding quantitative evaluation is limited. Herein, the biomass-based CO2 utilization with an iron cycle (BCU-Fe) system, which converts CO2 into formate by Fe under hydrothermal conditions and recovers Fe with biomass-derived glycerin, was investigated. The GHG reduction potential under various process designs was quantified by a multidisciplinary method, including experiments, simulations, and an ex-ante life-cycle assessment. The results reveal that the BCU-Fe system could bring considerable GHG emission reduction. Significantly, the lowest value is −34.03 kg CO2-eq/kg absorbed CO2 (−2.44 kg CO2-eq/kg circulated Fe) with the optimal yield of formate (66%) and Fe (80%). The proposed ex-ante evaluation approach not only reveals the benefits of mitigating climate change by applying the BCU-Fe system, but also serves as a generic tool to guide the industrialization of emerging carbon-neutral technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelnaby M M, Liu K, Hassanein K, Yin Z (2021). Photo/electrochemical carbon dioxide conversion into C3+ hydrocarbons: reactivity and selectivity. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 7(9): 969–981

    Article  CAS  Google Scholar 

  • Álvarez A, Bansode A, Urakawa A, Bavykina A V, Wezendonk T A, Makkee M, Gascon J, Kapteijn F (2017). Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chemical Reviews, 117(14): 9804–9838

    Article  Google Scholar 

  • Babin A, Vaneeckhaute C, Iliuta M C (2021). Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: a review. Biomass and Bioenergy, 146: 105968

    Article  CAS  Google Scholar 

  • Broman G I, Robèrt K H (2017). A framework for strategic sustainable development. Journal of Cleaner Production, 140: 17–31

    Article  Google Scholar 

  • Bruinsma O, Spoelstra S (2010). Heat pumps in distillation. Engineering, Environmental Science, 15: 165086145

    Google Scholar 

  • Bulushev D A, Ross J R H (2018). Towards sustainable production of formic acid. ChemSusChem, 11(5): 821–836

    Article  CAS  Google Scholar 

  • Castillo Martinez F A, Balciunas E M, Salgado J M, Domínguez González J M, Converti A, Oliveira R P D S (2013). Lactic acid properties, applications and production: a review. Trends in Food Science & Technology, 30(1): 70–83

    Article  Google Scholar 

  • Cheng Y, Shan Y, Xue Y, Zhu Y, Wang X, Xue L, Liu Y, Qiao F, Zhang M (2022). Variation characteristics of atmospheric methane and carbon dioxide in summertime at a coastal site in the South China Sea. Frontiers of Environmental Science & Engineering, 16(11): 139

    Article  CAS  Google Scholar 

  • Chin S Y, Shahruddin S, Chua G K, Samsodin N, Setiabudi H D, Karam Chand N S, Chew F N, Leong J X, Jusoh R, Samsudin N A (2021). Palm oil-based chemicals for sustainable development of petrochemical industries in Malaysia: progress, prospect, and challenges. ACS Sustainable Chemistry & Engineering, 9(19): 6510–6533

    Article  CAS  Google Scholar 

  • Delidovich I, Hausoul P J, Deng L, Pfutzenreuter R, Rose M, Palkovits R (2016). Alternative monomers based on lignocellulose and their use for polymer production. Chemical Reviews, 116(3): 1540–1599

    Article  CAS  Google Scholar 

  • Dincer I (2012). Green methods for hydrogen production. International Journal of Hydrogen Energy, 37(2): 1954–1971

    Article  CAS  Google Scholar 

  • Duo J, Jin F, Wang Y, Zhong H, Lyu L, Yao G, Huo Z (2016). NaHCO3-enhanced hydrogen production from water with Fe and in situ highly efficient and autocatalytic NaHCO3 reduction into formic acid. Chemical Communications (Cambridge), 52(16): 3316–3319

    Article  CAS  Google Scholar 

  • Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels B F (2013). Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy & Environmental Science, 6(5): 1415–1442

    Article  CAS  Google Scholar 

  • Feng X, Pi Y, Song Y, Brzezinski C, Xu Z, Li Z, Lin W (2020). Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO2 Reduction with earth-abundant copper photosensitizers. Journal of the American Chemical Society, 142(2): 690–695

    Article  CAS  Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus H J, Doka G, Dones R, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M (2005). The ecoinvent database: overview and methodological framework (7 pp). International Journal of Life Cycle Assessment, 10(1): 3–9

    Article  CAS  Google Scholar 

  • Gong X, Li J, Chang S X, Wu Q, An Z, Huang C, Sun X, Li S, Wang H (2022). Cattle manure biochar and earthworm interactively affected CO2 and N2O emissions in agricultural and forest soils: Observation of a distinct difference. Frontiers of Environmental Science & Engineering, 16(3): 39

    Article  CAS  Google Scholar 

  • He R, Hu B, Zhong H, Jin F, Fan J, Hu Y H, Jing Z (2019). Reduction of CO2 with H2S in a simulated deep-sea hydrothermal vent system. Chemical Communications (Cambridge), 55(8): 1056–1059

    Article  CAS  Google Scholar 

  • Huijbregts M a J, Steinmann Z J N, Elshout P M F, Stam G, Verones F, Vieira M, Zijp M, Hollander A, Van Zelm R (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2): 138–147

    Article  Google Scholar 

  • Igos E, Benetto E, Meyer R, Baustert P, Othoniel B (2019). How to treat uncertainties in life cycle assessment studies? International Journal of Life Cycle Assessment, 24(4): 794–807

    Article  Google Scholar 

  • Iyer S S, Bajaj I, Balasubramanian P, Hasan M M F (2017). Integrated carbon capture and conversion to produce syngas: novel process design, intensification, and optimization. Industrial & Engineering Chemistry Research, 56(30): 8622–8648

    Article  CAS  Google Scholar 

  • Jin F, Gao Y, Jin Y, Zhang Y, Cao J, Wei Z, Smith R L Jr (2011). High-yield reduction of carbon dioxide into formic acid by zero-valent metal/metal oxide redox cycles. Energy & Environmental Science, 4(3): 881–884

    Article  CAS  Google Scholar 

  • Khoo H H, Halim I, Handoko A D (2020). LCA of electrochemical reduction of CO2 to ethylene. Journal of CO2 Utilization, 41: 101229

    Article  CAS  Google Scholar 

  • Lacirignola M, Blanc P, Girard R, Pérez-López P, Blanc I (2017). LCA of emerging technologies: addressing high uncertainty on inputs’ variability when performing global sensitivity analysis. Science of the Total Environment, 578: 268–280

    Article  CAS  Google Scholar 

  • Li J, Zhu P, Zhong H, Yang Y, Cheng J, Wang Y, Jin F (2021). Hydrothermal reduction of NaHCO3 into formate with protein-based biomass over Pd/γ-Al2O3 nanocatalysts. ACS Sustainable Chemistry & Engineering, 9(13): 4791–4800

    Article  CAS  Google Scholar 

  • Liu Y, Deng D, Bao X (2020). Catalysis for selected C1 chemistry. Chem, 6(10): 2497–2514

    Article  CAS  Google Scholar 

  • Lu J, Kumagai S, Fukushima Y, Ohno H, Borjigin S, Kameda T, Saito Y, Yoshioka T (2021). Sustainable advance of Cl recovery from polyvinyl chloride waste based on experiment, simulation, and ex ante life-cycle assessment. ACS Sustainable Chemistry & Engineering, 9(42): 14112–14123

    Article  CAS  Google Scholar 

  • Lu J, Kumagai S, Fukushima Y, Ohno H, Kameda T, Saito Y, Yoshioka T (2020). Combined experiment, simulation, and ex-ante LCA Approach for sustainable Cl recovery from NaCl/Ethylene Glycol by electrodialysis. Industrial & Engineering Chemistry Research, 59(45): 20112–20122

    Article  CAS  Google Scholar 

  • Lu J, Kumagai S, Ohno H, Kameda T, Saito Y, Yoshioka T, Fukushima Y (2019). Deducing targets of emerging technologies based on ex ante life cycle thinking: case study on a chlorine recovery process for polyvinyl chloride wastes. Resources, Conservation and Recycling, 151: 104500

    Article  Google Scholar 

  • Lu J, Tang J, Shan R, Li G, Rao P, Zhang N (2023). Spatiotemporal analysis of the future carbon footprint of solar electricity in the United States by a dynamic life cycle assessment. iScience, 26(3): 106188

    Article  CAS  Google Scholar 

  • Madi M, Tahir M, Tasleem S (2021). Advances in structural modification of perovskite semiconductors for visible light assisted photocatalytic CO2 reduction to renewable solar fuels: a review. Journal of Environmental Chemical Engineering, 9(5): 106264

    Article  CAS  Google Scholar 

  • Martens J A, Bogaerts A, De Kimpe N, Jacobs P A, Marin G B, Rabaey K, Saeys M, Verhelst S (2017). The chemical route to a carbon dioxide neutral world. ChemSusChem, 10(6): 1039–1055

    Article  CAS  Google Scholar 

  • Moustakas N G, Strunk J (2018). Photocatalytic CO2 reduction on TiO2-based materials under controlled reaction conditions: systematic insights from a literature study. Chemistry - A European Journal, 24(49): 12739–12746

    Article  CAS  Google Scholar 

  • Peters J F, Iribarren D, Dufour J (2015a). Biomass pyrolysis for biochar or energy applications? A life cycle assessment Environmental Science & Technology, 49(8): 5195–5202

    Article  CAS  Google Scholar 

  • Peters J F, Iribarren D, Dufour J (2015b). Simulation and life cycle assessment of biofuel production via fast pyrolysis and hydroupgrading. Fuel, 139: 441–456

    Article  CAS  Google Scholar 

  • Kiss A A (2014). Energy efficient distillation powered by heat pumps upgrading low quality energy to drive the Reboiler of the column. NPT Procestechnologie, 2: 15–17

    Google Scholar 

  • Ruiz C, Rincón L, Contreras R R, Sidney C, Almarza J (2020). Sustainable and negative carbon footprint solid-based NaOH technology for CO2 capture. ACS Sustainable Chemistry & Engineering, 8(51): 19003–19012

    Article  CAS  Google Scholar 

  • Sabri M A, Al Jitan S, Bahamon D, Vega L F, Palmisano G (2021). Current and future perspectives on catalytic-based integrated carbon capture and utilization. Science of the Total Environment, 790: 148081

    Article  CAS  Google Scholar 

  • Silvestre B S, Ţîrcă D M (2019). Innovations for sustainable development: moving toward a sustainable future. Journal of Cleaner Production, 208: 325–332

    Article  Google Scholar 

  • Stegmann P, Daioglou V, Londo M, Van Vuuren D P, Junginger M (2022). Plastic futures and their CO2 emissions. Nature, 612(7939): 272–276

    Article  CAS  Google Scholar 

  • Tan Y, Nookuea W, Li H, Thorin E, Yan J (2016). Property impacts on Carbon Capture and Storage (CCS) processes: a review. Energy Conversion and Management, 118: 204–222

    Article  CAS  Google Scholar 

  • Tan Y, Nookuea W, Li H, Thorin E, Yan J (2017). Evaluation of viscosity and thermal conductivity models for CO2 mixtures applied in CO2 cryogenic process in carbon capture and storage (CCS). Applied Thermal Engineering, 123: 721–733

    Article  CAS  Google Scholar 

  • The Intergovernmental Panel on Climate Change (2022). IPCC, 2022: summary for policymakers. In: Climate change 2022: Impacts, adaptation, and vulnerability: contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, UK and New York, NY, US, pp. 3–33

  • Thonemann N, Schulte A (2019). From laboratory to industrial scale: a prospective LCA for electrochemical reduction of CO2 to formic acid. Environmental Science & Technology, 53(21): 12320–12329

    Article  CAS  Google Scholar 

  • Villares M, Işıldar A, Van Der Giesen C, Guinée J (2017). Does ex ante application enhance the usefulness of LCA? A case study on an emerging technology for metal recovery from e-waste International Journal of Life Cycle Assessment, 22(10): 1618–1633

    Google Scholar 

  • Von Der Assen N, Voll P, Peters M, Bardow A (2014). Life cycle assessment of CO2 capture and utilization: a tutorial review. Chemical Society Reviews, 43(23): 7982–7994

    Article  CAS  Google Scholar 

  • Wang F, Deng S, Zhang H, Wang J, Zhao J, Miao H, Yuan J, Yan J (2020a). A comprehensive review on high-temperature fuel cells with carbon capture. Applied Energy, 275: 115342

    Article  CAS  Google Scholar 

  • Wang W, Wang S, Ma X, Gong J (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40(7): 3703–3727

    Article  CAS  Google Scholar 

  • Wang X, Yang Y, Zhong H, He R, Cheng J, Jin F (2020b). In situ formed Raney-Ni/Fe3O4 catalyzed reduction of NaHCO3 into acetate with Fe as reductant in water. Catalysis Today, 350: 136–141

    Article  CAS  Google Scholar 

  • Wei W, Larrey-Lassalle P, Faure T, Dumoulin N, Roux P, Mathias J D (2015). How to conduct a proper sensitivity analysis in life cycle assessment: taking into account correlations within LCI Data and Interactions within the LCA calculation model. Environmental Science & Technology, 49(1): 377–385

    Article  CAS  Google Scholar 

  • Wei Y M, Han R, Wang C, Yu B, Liang Q M, Yuan X C, Chang J, Zhao Q, Liao H, Tang B, Yan J, Cheng L, Yang Z (2020). Self-preservation strategy for approaching global warming targets in the Post-Paris Agreement Era. Nature Communications, 11(1): 1624 Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B (2016). The ecoinvent database version 3 (part I): overview and methodology. International Journal of Life Cycle Assessment, 21(9): 1218–1230

    Google Scholar 

  • Wölfel R, Taccardi N, Bösmann A, Wasserscheid P (2011). Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen. Green Chemistry, 13(10): 2759–2763

    Article  Google Scholar 

  • Xu Q, Li X, Pan T, Yu C, Deng J, Guo Q, Fu Y (2016). Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone. Green Chemistry, 18(5): 1287–1294

    Article  CAS  Google Scholar 

  • Xue N, Lu J, Gu D, Lou Y, Yuan Y, Li G, Kumagai S, Saito Y, Yoshioka T, Zhang N (2023). Carbon footprint analysis and carbon neutrality potential of desalination by electrodialysis for different applications. Water Research, 232: 119716

    Article  CAS  Google Scholar 

  • Yang M, Feng X, Liu G (2016). Heat integration of heat pump assisted distillation into the overall process. Applied Energy, 162: 1–10

    Article  Google Scholar 

  • Yang Y, Zhong H, He R, Wang X, Cheng J, Yao G, Jin F (2019). Synergetic conversion of microalgae and CO2 into value-added chemicals under hydrothermal conditions. Green Chemistry, 21(6): 1247–1252

    Article  CAS  Google Scholar 

  • Yang Y, Zhong H, Yao G, He R, Jin B, Jin F (2018). Hydrothermal reduction of NaHCO3 into formate with hexanehexol. Catalysis Today, 318: 10–14

    Article  CAS  Google Scholar 

  • Ye W, Huang J, Lin J, Zhang X, Shen J, Luis P, Van Der Bruggen B (2015). Environmental evaluation of bipolar membrane electrodialysis for NaOH production from wastewater: conditioning NaOH as a CO2 absorbent. Separation and Purification Technology, 144: 206–214

    Article  CAS  Google Scholar 

  • Zhang D, Hou R, Wang W, Zhao H (2022). Recovery and reuse of floc sludge for high-performance capacitors. Frontiers of Environmental Science & Engineering, 16(6): 78

    Article  CAS  Google Scholar 

  • Zhao X, Zhou H, Sikarwar V S, Zhao M, Park A H A, Fennell P S, Shen L, Fan L S (2017). Biomass-based chemical looping technologies: the good, the bad and the future. Energy & Environmental Science, 10(9): 1885–1910

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (No. 21978170), the Natural Science Foundation of Shanghai (No. 19ZR1424800), and the Center of Hydrogen Science, Shanghai Jiao Tong University, China. Jing Xu was supported by Shanghai Post-doctoral Excellence Program of Shanghai Municipal Human Resources and Social Security Bureau.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaqi Lu or Fangming Jin.

Additional information

Highlights

• Greenhouse gas mitigation by biomass-based CO2 utilization with a Fe cycle system.

• The system including hydrothermal CO2 reduction with Fe and Fe recovery by biomass.

• The reduction potential quantified by experiments, simulations, and an ex-ante LCA.

• The greatest GHG reduction potential is −34.03 kg CO2-eq/kg absorbed CO2.

• Ex-ante LCA supports process optimization to maximize GHG reduction potential.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Cheng, J., He, R. et al. Revealing the GHG reduction potential of emerging biomass-based CO2 utilization with an iron cycle system. Front. Environ. Sci. Eng. 17, 127 (2023). https://doi.org/10.1007/s11783-023-1727-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-023-1727-8

Keywords

Navigation