Skip to main content
Log in

Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Two-thirds of the world’s population has limited access to potable water. As we continue to use up our freshwater resources, new and improved techniques for potable water production are warranted. Here, we present a general concept called “salinity exchange” that transfers salts from seawater or brackish water to treated wastewater until their salinity values approximately switch, thus producing wastewater with an increased salinity for discharge and desalinated seawater as the potable water source. We have demonstrated this process using electrodialysis. Salinity exchange has been successfully achieved between influents of different salinities under various operating conditions. Laboratory-scale salinity exchange electrodialysis (SEE) systems can produce high-quality desalinated water at ∼1 mL/min with an energy consumption less than 1 kWh/m3. SEE has also been operated using real water, and the challenges of its implementation at a larger scale are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achilli A, Cath T Y, Childress A E (2009). Power generation with pressure retarded osmosis: an experimental and theoretical investigation. Journal of Membrane Science, 343(1–2): 42–52

    Article  CAS  Google Scholar 

  • Al-Karaghouli A, Renne D, Kazmerski L L (2010). Technical and economic assessment of photovoltaic-driven desalination systems. Renewable Energy, 35(2): 323–328

    Article  CAS  Google Scholar 

  • Baggett S, Jeffrey P, Jefferson B (2006). Risk perception in participatory planning for water reuse. Desalination, 187(1–3): 149–158

    Article  CAS  Google Scholar 

  • Bitaw T N, Park K, Yang D R (2016). Optimization on a new hybrid forward osmosis-electrodialysis-reverse osmosis seawater desalination process. Desalination, 398: 265–281

    Article  CAS  Google Scholar 

  • Blandin G, Verliefde A R D, Comas J, Rodriguez-Roda I, Le-Clech P (2016). Efficiently combining water reuse and desalination through forward osmosis-reverse osmosis (FO-RO) hybrids: a critical review. Membranes (Basel), 6(3): 37

    Article  Google Scholar 

  • Brauns E (2010). An alternative hybrid concept combining seawater desalination, solar energy and reverse electrodialysis for a sustainable production of sweet water and electrical energy. Desalination and Water Treatment, 13(1–3): 53–62

    Article  CAS  Google Scholar 

  • Cipollina A, Micale G, Tamburini A, Tedesco M, Gurreri L, Veerman J, Grasman S (2016). Sustainable Energy from Salinity Gradients. Cambridge: Woodhead Publishing, 135–180

    Book  Google Scholar 

  • Diego C O S (2013). Water Purification Demonstration Project. Project Report

  • Dolnicar S, Hurlimann A, Grün B (2011). What affects public acceptance of recycled and desalinated water? Water Research, 45(2): 933–943

    Article  CAS  Google Scholar 

  • Dolnicar S, Schäfer A I (2006). Public perception of desalinated versus recycled water in Australia

  • Dolnicar S, Schäfer A I (2009). Desalinated versus recycled water: public perceptions and profiles of the accepters. Journal of Environmental Management, 90(2): 888–900

    Article  CAS  Google Scholar 

  • Du Pisani P, Menge J G (2013). Direct potable reclamation in Windhoek: a critical review of the design philosophy of new Goreangab drinking water reclamation plant. Water Science and Technology: Water Supply, 13(2): 214–226

    CAS  Google Scholar 

  • Eke J, Yusuf A, Giwa A, Sodiq A (2020). The global status of desalination: an assessment of current desalination technologies, plants and capacity. Desalination, 495: 114633

    Article  CAS  Google Scholar 

  • Elimelech M, Phillip W A (2011). The future of seawater desalination: energy, technology, and the environment. Science, 333(6043): 712–717

    Article  CAS  Google Scholar 

  • Elsaid K, Sayed E T, Abdelkareem M A, Mahmoud M S, Ramadan M, Olabi A G (2020). Environmental impact of emerging desalination technologies: a preliminary evaluation. Journal of Environmental Chemical Engineering, 8(5): 104099

    Article  CAS  Google Scholar 

  • Englehardt J D, Wu T, Bloetscher F, Deng Y, Du Pisani P, Eilert S, Elmir S, Guo T, Jacangelo J, Lechevallier M, Leverenz H, Mancha E, Plater-Zyberk E, Sheikh B, Steinle-Darling E, Tchobanoglous G (2016). Net-zero water management: achieving energy-positive municipal water supply. Environmental Science. Water Research & Technology, 2(2): 250–260

    Article  Google Scholar 

  • Fan H, Yip N Y (2019). Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes. Journal of Membrane Science, 573: 668–681

    Article  CAS  Google Scholar 

  • Fernandez-Gonzalez C, Dominguez-Ramos A, Ibañez R, Irabien A (2019). Current Trends and Future Developments on (Bio-) Membranes. Boston: Elsevier, 111–131

    Book  Google Scholar 

  • Fritzmann C, Löwenberg J, Wintgens T, Melin T (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1): 1–76

    Article  CAS  Google Scholar 

  • Galama A H, Saakes M, Bruning H, Rijnaarts H H M, Post J W (2014). Seawater predesalination with electrodialysis. Desalination, 342: 61–69

    Article  CAS  Google Scholar 

  • Ghernaout D, Elboughdiri N, Alghamdi A (2019). Direct potable reuse: the Singapore NEWater project as a role model. OAlib, 6(12): 1–10

    Google Scholar 

  • Gilstrap M C (2013). Renewable Electricity from Salinity Gradients Using Reverse Electrodialysis. Atlanta: Georgia Institute of Technology

    Google Scholar 

  • Grant S B, Saphores J D, Feldman D L, Hamilton A J, Fletcher T D, Cook P L M, Stewardson M, Sanders B F, Levin L A, Ambrose R F, et al. (2012). Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science, 337(6095): 681–686

    Article  CAS  Google Scholar 

  • Guo T, Englehardt J D (2015). Principles for scaling of distributed direct potable water reuse systems: a modeling study. Water Research, 75: 146–163

    Article  CAS  Google Scholar 

  • Indusekhar V K, Krishnaswamy N (1985). Water transport studies on interpolymer ion-exchange membranes. Desalination, 52(3): 309–316

    Article  CAS  Google Scholar 

  • Johnson A S, Hillestad H O, Shanholtzer S F, Shanholtzer G F, Service U S N P (1974). An Ecological Survey of the Coastal Region of Georgia. Atlanta: National Park Service

    Google Scholar 

  • Kalogirou S A (2005). Seawater desalination using renewable energy sources. Progress in Energy and Combustion Science, 31(3): 242–281

    Article  CAS  Google Scholar 

  • Kurihara M (2021). Current status and future trend of dominant commercial reverse osmosis membranes. Membranes (Basel), 11(11): 906

    Article  CAS  Google Scholar 

  • Lefebvre O (2018). Beyond NEWater: an insight into Singapore’s water reuse prospects. Current Opinion in Environmental Science & Health, 2: 26–31

    Article  Google Scholar 

  • Leverenz H L, Tchobanoglous G, Asano T (2011). Direct potable reuse: a future imperative. Journal of Water Reuse and Desalination, 1(1): 2–10

    Article  CAS  Google Scholar 

  • Li W, Krantz W B, Cornelissen E R, Post J W, Verliefde A R D, Tang C Y (2013). A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Applied Energy, 104: 592–602

    Article  CAS  Google Scholar 

  • Liu Y, Nie C, Liu X, Xu X, Sun Z, Pan L (2015). Review on carbon-based composite materials for capacitive deionization. RSC Advances, 5(20): 15205–15225

    Article  CAS  Google Scholar 

  • Logan B E, Elimelech M (2012). Membrane-based processes for sustainable power generation using water. Nature, 488(7411): 313–319

    Article  CAS  Google Scholar 

  • Luo F, Wang Y, Jiang C, Wu B, Feng H, Xu T (2017). A power free electrodialysis (PFED) for desalination. Desalination, 404: 138–146

    Article  CAS  Google Scholar 

  • Marks J S (2006). Taking the public seriously: the case of potable and non potable reuse. Desalination, 187(1–3): 137–147

    Article  CAS  Google Scholar 

  • Mekonnen M M, Hoekstra A Y (2016). Four billion people facing severe water scarcity. Science Advances, 2(2): e1500323

    Article  Google Scholar 

  • Morel A, Zuo K, Xia X, Wei J, Luo X, Liang P, Huang X (2012). Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate. Reviews in Chemical Engineering, 118(1): 43–48

    CAS  Google Scholar 

  • Nam J Y, Hwang K S, Kim H C, Jeong H, Kim H, Jwa E, Yang S, Choi J, Kim C S, Han J H, Jeong N (2019). Assessing the behavior of the feed-water constituents of a pilot-scale 1000-cell-pair reverse electrodialysis with seawater and municipal wastewater effluent. Water Research, 148: 261–271

    Article  CAS  Google Scholar 

  • Patel C G, Barad D, Swaminathan J (2022). Desalination using pressure or electric field? a fundamental comparison of RO and electrodialysis Desalination, 530: 115620

    Article  CAS  Google Scholar 

  • Patel S K, Biesheuvel P M, Elimelech M (2021). Energy Consumption of Brackish Water Desalination: Identifying the Sweet Spots for Electrodialysis and Reverse Osmosis. ACS ES&T Engineering, 1(5): 851–864

    Article  CAS  Google Scholar 

  • Pecson B M, Triolo S C, Olivieri S, Chen E C, Pisarenko A N, Yang C C, Olivieri A, Haas C N, Trussell R S, Trussell R R (2017). Reliability of pathogen control in direct potable reuse: Performance evaluation and QMRA of a full-scale 1 MGD advanced treatment train. Water Research, 122: 258–268

    Article  CAS  Google Scholar 

  • Pellegrino J, Gorman C, Richards L (2007). A speculative hybrid reverse osmosis/electrodialysis unit operation. Desalination, 214(1): 11–30

    Article  CAS  Google Scholar 

  • Pilat B (2001). Practice of water desalination by electrodialysis. Desalination, 139(1): 385–392

    Article  CAS  Google Scholar 

  • Qasim M, Badrelzaman M, Darwish N N, Darwish N A, Hilal N (2019). Reverse osmosis desalination: a state-of-the-art review. Desalination, 459: 59–104

    Article  CAS  Google Scholar 

  • Rajindar S (2015). Membrane Technology and Engineering for Water Purification, 2nd ed. Oxford: Butterworth-Heinemann

    Google Scholar 

  • Ramon G Z, Feinberg B J, Hoek E M V (2011). Membrane-based production of salinity-gradient power. Energy & Environmental Science, 4(11): 4423–4434

    Article  CAS  Google Scholar 

  • Roman M, Gutierrez L, Van Dijk L H, Vanoppen M, Post J W, Wols B A, Cornelissen E R, Verliefde A R D (2020). Effect of pH on the transport and adsorption of organic micropollutants in ion-exchange membranes in electrodialysis-based desalination. Separation and Purification Technology, 252: 117487

    Article  CAS  Google Scholar 

  • Roman M, Van Dijk L H, Gutierrez L, Vanoppen M, Post J W, Wols B A, Cornelissen E R, Verliefde A R D (2019). Key physicochemical characteristics governing organic micropollutant adsorption and transport in ion-exchange membranes during reverse electrodialysis. Desalination, 468: 114084

    Article  CAS  Google Scholar 

  • Sadrzadeh M, Mohammadi T (2009). Treatment of sea water using electrodialysis: current efficiency evaluation. Desalination, 249(1): 279–285

    Article  CAS  Google Scholar 

  • Semiat R (2008). Energy issues in desalination processes. Environmental Science & Technology, 42(22): 8193–8201

    Article  CAS  Google Scholar 

  • Semiat R, Hasson D (2012). Water desalination. Reviews in Chemical Engineering, 28(1): 43–60

    Article  Google Scholar 

  • Seto T, Ehara L, Komori R, Yamaguchi A, Miwa T (1978). Seawater desalination by electrodialysis. Desalination, 25(1): 1–7

    Article  CAS  Google Scholar 

  • Singh R, Hankins N P (2016). Emerging Membrane Technology for Sustainable Water Treatment. Boston: Elsevier

    Google Scholar 

  • Skilhagen S E, Dugstad J E, Aaberg R J (2008). Osmotic power—power production based on the osmotic pressure difference between waters with varying salt gradients. Desalination, 220(1–3): 476–482

    Article  CAS  Google Scholar 

  • Spiegler K S, El-Sayed Y M (2001). The energetics of desalination processes. Desalination, 134(1): 109–128

    Article  CAS  Google Scholar 

  • SMCAPHA, AWWA, WEF(2005). Standard Methods for the Examination of Water and Wastewater. New York: Standard Methods Committee of the American Public Health Association, American Water Works Association, Water Environment Federation

    Google Scholar 

  • Subramani A, Jacangelo J G (2015). merging desalination technologies for water treatment: a critical review. Water Research, 75: 164–187

    Article  CAS  Google Scholar 

  • Thampy S K, Narayanan P K, Harkare W P, Govindan K P (1988). Seawater desalination by electrodialysis. Part II: a novel approach to combat scaling in seawater desalination by electrodialysis. Desalination, 69(3): 261–273

    Article  CAS  Google Scholar 

  • Valladares Linares R, Li Z, Sarp S, Bucs S S, Amy G, Vrouwenvelder J S (2014). Forward osmosis niches in seawater desalination and wastewater reuse. Water Research, 66: 122–139

    Article  CAS  Google Scholar 

  • Vanoppen M, Blandin G, Derese S, Le Clech P, Post J, Verliefde A R D (2016). Sustainable Energy from Salinity Gradients. Cambridge: Woodhead Publishing, 281–313

    Book  Google Scholar 

  • Vanoppen M, Van Vooren T, Gutierrez L, Roman M, Croué L J P, Verbeken K, Philips J, Verliefde A R D (2019). Secondary treated domestic wastewater in reverse electrodialysis: What is the best pre-treatment? Separation and Purification Technology, 218: 25–42

    Article  CAS  Google Scholar 

  • Volfkovich Y M (2020). Capacitive deionization of water: a review. Russian Journal of Electrochemistry, 56(1): 18–51

    Article  CAS  Google Scholar 

  • Yangali-Quintanilla V, Li Z, Valladares R, Li Q, Amy G (2011). Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse. Desalination, 280(1–3): 160–166

    Article  CAS  Google Scholar 

  • Yip N Y, Elimelech M (2012). Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis. Environmental Science & Technology, 46(9): 5230–5239

    Article  CAS  Google Scholar 

  • Youssef P G, Al-Dadah R K, Mahmoud S M (2014). Comparative analysis of desalination technologies. Energy Procedia, 61: 2604–2607

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Interior Bureau of Reclamation (No. R19AC00101). The authors acknowledge Sydney Taylor-Klaus for helping in seawater collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongsheng Chen or Xing Xie.

Additional information

Highlights

• Present a general concept called “salinity exchange”.

• Salts transferred from seawater to treated wastewater until completely switch.

• Process demonstrated using a laboratory-scale electrodialysis system.

• High-quality desalinated water obtained at ∼1 mL/min consuming < 1 kWh/m3 energy.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarin, M., Dou, Z., Gao, H. et al. Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water. Front. Environ. Sci. Eng. 17, 16 (2023). https://doi.org/10.1007/s11783-023-1616-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-023-1616-1

Keywords

Navigation