Skip to main content
Log in

The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The Fe/N ratio is an important control on nitrate-reducing Fe(II) oxidation processes that occur both in the aquatic environment and in wastewater treatment systems. The response of nitrate reduction, Fe oxidation, and mineral production to different initial Fe/N molar ratios in the presence of Paracoccus denitrificans was investigated in 132 h incubation experiments. A decrease in the nitrate reduction rate at 12 h occurred as the Fe/N ratio increased. Accumulated nitrite concentration at Fe/N ratios of 2–10 peaked at 12–84 h, and then decreased continuously to less than 0.1 mmol/L at the end of incubation. N2O emission was promoted by high Fe/N ratios. Maximum production of N2 occurred at a Fe/N ratio of 6, in parallel with the highest mole proportion of N2 resulting from the reduction of nitrate (81.2%). XRD analysis and sequential extraction demonstrated that the main Fe minerals obtained from Fe(II) oxidation were easily reducible oxides such as ferrihydrite (at Fe/N ratios of 1–2), and easily reducible oxides and reducible oxides (at Fe/N ratios of 3–10). The results suggest that Fe/N ratio potentially plays a critical role in regulating N2, N2O emissions and Fe mineral formation in nitrate-reducing Fe (II) oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller R C, Heilbrun C, Panzeca C, Zhu Z, Baltzer F (2004). Coupling between sedimentary dynamics, early diagenetic processes, and biogeochemical cycling in the Amazon-Guianas mobile mud belt: Coastal French Guiana. Marine Geology, 208(2–4): 331–360

    Article  CAS  Google Scholar 

  • APHA (2012). Standard Methods for the Examination of Water and Wastewater, 22nd ed. Washington, DC: American Public Health Association

    Google Scholar 

  • Bryce C, Blackwell N, Schmidt C, Otte J, Huang Y M, Kleindienst S, Tomaszewski E, Schad M, Warter V, Peng C, Byrne J M, Kappler A (2018). Microbial anaerobic Fe(II) oxidation: Ecology, mechanisms and environmental implications. Environmental Microbiology, 20(10): 3462–3483

    Article  CAS  Google Scholar 

  • Buchwald C, Grabb K, Hansel C M, Wankel S D (2016). Constraining the role of iron in environmental nitrogen transformations: Dual stable isotope systematics of abiotic NO2 reduction by Fe(II) and its production of N2O. Geochimica et Cosmochimica Acta, 186: 1–12

    Article  CAS  Google Scholar 

  • Carlson H K, Clark I C, Melnyk R A, Coates J D (2012). Toward a mechanistic understanding of anaerobic nitrate-dependent iron oxidation: Balancing electron uptake and detoxification. Frontiers in Microbiology, 3: 57

    Article  Google Scholar 

  • Carlson H K, Clark I C, Blazewicz S J, Iavarone A T, Coates J D (2013). Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. Journal of Bacteriology, 195(14): 3260–3268

    Article  CAS  Google Scholar 

  • Chakraborty A, Roden E E, Schieber J, Picardal F (2011). Enhanced growth of Acidovorax sp. strain 2AN during nitrate-dependent Fe(II) oxidation in batch and continuous-flow systems. Applied and Environmental Microbiology, 77(24): 8548–8556

    Article  CAS  Google Scholar 

  • Chen D D, Liu T X, Li X M, Li F B, Luo X B, Wu Y D, Wang Y (2018). Biological and chemical processes of microbially mediated nitratereducing Fe(II) oxidation by Pseudogulbenkiania sp. strain 2002. Chemical Geology, 476: 59–69

    Article  CAS  Google Scholar 

  • Chen D D, Yuan X, Zhao W Q, Luo X B, Li F B, Liu T X (2020). Chemodenitrification by Fe(II) and nitrite: pH effect, mineralization and kinetic modeling. Chemical Geology, 541: 119586

    Article  CAS  Google Scholar 

  • Das S, Hendry M J, Essilfie-Dughan J (2011). Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature. Environmental Science & Technology, 45(1): 268–275

    Article  CAS  Google Scholar 

  • Ehrenreich A, Widdel F (1994). Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Applied and Environmental Microbiology, 60(12): 4517–4526

    Article  CAS  Google Scholar 

  • Grabb K C, Buchwald C, Hansel C M, Wankel S D (2017). A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(II) and its production of nitrous oxide. Geochimica et Cosmochimica Acta, 196: 388–402

    Article  CAS  Google Scholar 

  • Han Z F, Miao Y, Dong J, Shen Z Q, Zhou Y X, Liu S, Yang C P (2019). Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating anaerobically digested swine wastewater. Frontiers of Environmental Science & Engineering, 13(4): 52

    Article  Google Scholar 

  • He Q, Zhu Y Y, Li G, Fan L L, Ai H N, Huangfu X L, Li H (2017). Impact of dissolved oxygen on the production of nitrous oxide in biological aerated filters. Frontiers of Environmental Science & Engineering, 11(6): 16

    Article  Google Scholar 

  • Jamieson J, Prommer H, Kaksonen A H, Sun J, Siade A J, Yusov A, Bostick B (2018). Identifying and quantifying the intermediate processes during nitrate-dependent iron(II) oxidation. Environmental Science & Technology, 52(10): 5771–5781

    Article  CAS  Google Scholar 

  • Klueglein N, Kappler A (2013). Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1- questioning the existence of enzymatic Fe (II) oxidation. Geobiology, 11(2): 180–190

    Article  CAS  Google Scholar 

  • Larese-Casanova P, Haderlein S B, Kappler A (2010). Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: Effect of pH, bicarbonate, phosphate, and humic acids. Geochimica et Cosmochimica Acta, 74(13): 3721–3734

    Article  CAS  Google Scholar 

  • Liu T X, Chen D D, Luo X B, Li X M, Li F B (2019). Microbially mediated nitrate-reducing Fe(II) oxidation: Quantification of chemodenitrification and biological reactions. Geochimica et Cosmochimica Acta, 256: 97–115

    Article  CAS  Google Scholar 

  • Ma H, Zhao B Y, Li L, Xie F, Zhou H J, Zheng Q, Wang X H, He J, Lu C W (2019). Fractionation trends of phosphorus associating with iron fractions: An explanation by the simultaneous extraction procedure. Soil & Tillage Research, 190: 41–49

    Article  Google Scholar 

  • Melton E D, Swanner E D, Behrens S, Schmidt C, Kappler A (2014). The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews. Microbiology, 12(12): 797–808

    CAS  Google Scholar 

  • Miot J, Benzerara K, Morin G, Bernard S, Beyssac O, Larquet E, Kappler A, Guyot F (2009a). Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology, 7(3): 373–384

    Article  CAS  Google Scholar 

  • Miot J, Benzerara K, Morin G, Kappler A, Bernard S, Obst M, Férard C, Skouri-Panet F, Guigner J M, Posth N, Galvez M, Brown G E Jr, Guyot F (2009b). Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochimica et Cosmochimica Acta, 73(3): 696–711

    Article  CAS  Google Scholar 

  • Miot J, Remusat L, Duprat E, Gonzalez A, Pont S, Poinsot M (2015). Fe biomineralization mirrors individual metabolic activity in a nitratedependent Fe(II)-oxidizer. Frontiers in Microbiology, 6: 879

    Article  Google Scholar 

  • Muehe E M, Gerhardt S, Schink B, Kappler A (2009). Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria. FEMS Microbiology Ecology, 70(3): 335–343

    Article  CAS  Google Scholar 

  • Otte J M, Blackwell N, Ruser R, Kappler A, Kleindienst S, Schmidt C (2019). N2O formation by nitrite-induced(chemo)denitrification in coastal marine sediment. Scientific Reports, 9: 10691

    Article  Google Scholar 

  • Ottley C J, Davison W, Edmunds W M (1997). Chemical catalysis of nitrate reduction by iron(II). Geochimica et Cosmochimica Acta, 61(9): 1819–1828

    Article  CAS  Google Scholar 

  • Picardal F (2012). Abiotic and microbial interactions during anaerobic transformations of Fe(II) and NOx. Frontiers in Microbiology, 3: 112

    Article  Google Scholar 

  • Posth N R, Canfield D E, Kappler A (2014). Biogenic Fe(III) minerals: From formation to diagenesis and preservation in the rock record. Earth-Science Reviews, 135: 103–121

    Article  CAS  Google Scholar 

  • Poulton S W, Canfield D E (2005). Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates. Chemical Geology, 214(3–4): 209–221

    Article  CAS  Google Scholar 

  • Pownceby M I, Hapugoda S, Manuel J, Webster N A S, MacRae C M (2019). Characterisation of phosphorus and other impurities in goethite-rich iron ores: Possible P incorporation mechanisms. Minerals Engineering, 143: 106022

    Article  CAS  Google Scholar 

  • Schwertmann U (1991). Solubility and dissolution of iron oxides. Plant and Soil, 130(1–2): 1–25

    Article  CAS  Google Scholar 

  • Sears H J, Spiro S, Richardson D J (1997). Effect of carbon substrate and aeration on nitrate reduction and expression of the periplasmic and membrane-bound nitrate reductases in carbon-limited continuous cultures of Paracoccus denitrificans Pd1222. Microbiology-UK, 143(12): 3767–3774

    Article  CAS  Google Scholar 

  • Sparacino-Watkins C, Stolz J F, Basu P (2014). Nitrate and periplasmic nitrate reductases. Chemical Society Reviews, 43(2): 676–706

    Article  CAS  Google Scholar 

  • Stookey L L (1970). Ferrozine: A new spectrophotometric reagent for iron. Analytical Chemistry, 42(7): 779–781

    Article  CAS  Google Scholar 

  • Straub K L, Benz M, Schink B, Widdel F (1996). Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology, 62(4): 1458–1460

    Article  CAS  Google Scholar 

  • Thakur I S, Medhi K (2019). Nitrification and denitrification processes for mitigation of nitrous oxide from waste water treatment plants for biovalorization: Challenges and opportunities. Bioresource Technology, 282: 502–513

    Article  CAS  Google Scholar 

  • Vasilaki V, Volcke E I P, Nandi A K, van Loosdrecht M C M, Katsou E (2018). Relating N2O emissions during biological nitrogen removal with operating conditions using multivariate statistical techniques. Water Research, 140: 387–402

    Article  CAS  Google Scholar 

  • Wang M L, Hu R G, Zhao J S, Kuzyakov Y, Liu S R (2016). Iron oxidation affects nitrous oxide emissions via donating electrons to denitrification in paddy soils. Geoderma, 271: 173–180

    Article  CAS  Google Scholar 

  • Watsuntorn W, Ruangchainikom C, Rene E R, Lens P N L, Chulalaksananukul W (2019). Comparison of sulphide and nitrate removal from synthetic wastewater by pure and mixed cultures of nitrate-reducing, sulphide-oxidizing bacteria. Bioresource Technology, 272: 40–47

    Article  CAS  Google Scholar 

  • Weber K A, Achenbach L A, Coates J D (2006). Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nature Reviews. Microbiology, 4(10): 752–764

    CAS  Google Scholar 

  • Włodarczyk T, Balakhnina T, Matichenkov V, Brzezińska M, Nosalewicz M, Szarlip P, Fomina I (2019). Effect of silicon on barley growth and N2O emission under flooding. Science of the Total Environment, 685: 1–9

    Article  Google Scholar 

  • Zhang L H, Zheng J, Guo J B, Guan X H, Zhu S Y, Jia Y P, Zhang J, Zhang X Y, Zhang H F (2019). Effects of Al3+ on pollutant removal and extracellular polymeric substances (EPS) under anaerobic, anoxic and oxic conditions. Frontiers of Environmental Science & Engineering, 13(6): 85

    Article  CAS  Google Scholar 

  • Zhang M, Zheng P, Li W, Wang R, Ding S, Abbas G (2015). Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: A novel prospective technology for autotrophic denitrification. Bioresource Technology, 179: 543–548

    Article  CAS  Google Scholar 

  • Zhang M, Zheng P, Wang R, Li W, Lu H F, Zhang J Q (2014). Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: A perspective autotrophic nitrogen pollution control technology. Chemosphere, 117: 604–609

    Article  CAS  Google Scholar 

  • Zhao L D, Dong H L, Kukkadapu R, Agrawal A, Liu D, Zhang J, Edelmann R E (2013). Biological oxidation of Fe(II) in reduced nontronite coupled with nitrate reduction by Pseudogulbenkiania sp. Strain 2002. Geochimica et Cosmochimica Acta, 119: 231–247

    Article  CAS  Google Scholar 

  • Zhu-Barker X, Cavazos A R, Ostrom N E, Horwath W R, Glass J B (2015). The importance of abiotic reactions for nitrous oxide production. Biogeochemistry, 126(3): 251–267

    Article  CAS  Google Scholar 

  • Zorgani E A, Cibati A, Trois C (2016). Assessment of a natural iron-based sand for the removal of nitrate from water. Water, Air, and Soil Pollution, 227(7): 249

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R & D Program of China (No. 2017YFC0505305) and the Fundamental Research Funds for the Central Universities (No. 2662018JC053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumei Hua.

Additional information

Highlights

• Bacterially-mediated coupled N and Fe processes examined in incubation experiments.

• NO3 reduction was considerably inhibited as initial Fe/N ratio increased.

• The maximum production of N2 occurred at an initial Fe/N molar ratio of 6.

• Fe minerals produced at Fe/N ratios of 1–2 were mainly easily reducible oxides.

Electronic Supplementary material

11783_2020_1366_MOESM1_ESM.pdf

The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, B., Wang, Y., Hua, Y. et al. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species. Front. Environ. Sci. Eng. 15, 73 (2021). https://doi.org/10.1007/s11783-020-1366-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-020-1366-2

Keywords

Navigation