Skip to main content
Log in

Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Zero-valent iron (ZVI) technology has recently gained significant interest in the efficient sequestration of a wide variety of contaminants. However, surface passivation of ZVI because of its intrinsic passive layer would lead to the inferior reactivity of ZVI and its lower efficacy in contaminant removal. Therefore, to activate the ZVI surface cheaply, continuously, and efficiently is an important challenge that ZVI technology must overcome before its wide-scale application. To date, several physical and chemical approaches have been extensively applied to increase the reactivity of the ZVI surface toward the elimination of broad-spectrum pollutants. Nevertheless, these techniques have several limitations such as low efficacy, narrow working pH, eco-toxicity, and high installation cost. The objective of this mini-review paper is to identify the critical role of oxygen in determining the reactivity of ZVI toward contaminant removal. Subsequently, the effect of three typical oxidants (H2O2, KMnO4, and NaClO) on broad-spectrum contaminants removal by ZVI has been documented and discussed. The reaction mechanism and sequestration efficacies of the ZVI/oxidant system were evaluated and reviewed. The technical basis of the ZVI/oxidant approach is based on the half-reaction of the cathodic reduction of the oxidants. The oxidants commonly used in the water treatment industry, i.e., NaClO, O3, and H2O2, can be served as an ideal coupling electron receptor. With the combination of these oxidants, the surface corrosion of ZVI can be continuously driven. The ZVI/oxidants technology has been compared with other conventional technologies and conclusions have been drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appelo C A J, Van der Weiden M J J, Tournassat C, Charlet L (2002) Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science & Technology, 36(14): 3096–3103

    CAS  Google Scholar 

  • Chen Z X, Jin X Y, Chen Z, Megharaj M, Naidu R (2011) Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. Journal of Colloid and Interface Science, 363(2): 601–607

    CAS  Google Scholar 

  • Cumming L J, Chen A S, Wang L, Sorg T J, Supply W (2009). Arsenic and Antimony Removal from Drinking Water by Adsorptive Media: US EPA Demonstration Project at South Truckee Meadows General Improvement District (STMGID, NV): Final Performance Evaluation Report. National Supply and Water Resources Division, National Risk Management Laboratory, Office of Research and Development

  • Fan X, Guan X, Ma J, Al H (2009). Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control, 21(8): 1028–1035

    CAS  Google Scholar 

  • Feng P, Guan X, Sun Y, Choi W, Qin H, Wang J, Qiao J, Li L (2015). Weak magnetic field accelerates chromate removal by zero-valent iron. Journal of Environmental Sciences (China), 31: 175–183

    CAS  Google Scholar 

  • Flury B, Frommer J, Eggenberger U, Mader U R S, Nachtegaal M, Kretzschmar R (2009). Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier. Environmental Science & Technology, 43(17): 6786–6792

    CAS  Google Scholar 

  • Genç-Fuhrman H, Wu P, Zhou Y, Ledin A (2008) Removal of As, Cd, Cr, Cu, Ni and Zn from polluted water using an iron based sorbent. Desalination, 226(1–3): 357–370

    Google Scholar 

  • Guan X, Sun Y, Qin H, Li J, Lo I M, He D, Dong H (2015). The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014). Water Research, 75: 224–248

    CAS  Google Scholar 

  • Guo X, Yang Z, Dong H, Guan X, Ren Q, Lv X, Jin X (2016). Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water. Water Research, 88: 671–680

    CAS  Google Scholar 

  • Guo X, Yang Z, Liu H, Lv X, Tu Q, Ren Q, Xia X, Jing C (2015) Common oxidants activate the reactivity of zero-valent iron (ZVI) and hence remarkably enhance nitrate reduction from water. Separation and Purification Technology, 146: 227–234

    CAS  Google Scholar 

  • Han X, Song J, Li Y L, Jia S Y, Wang W H, Huang F G, Wu S H (2016) As (III) removal and speciation of Fe (Oxyhydr) oxides during simultaneous oxidation of As (III) and Fe (II). Chemosphere, 147: 337–344

    CAS  Google Scholar 

  • Huang Y H, Zhang T C (2005) Effects of dissolved Oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+. Water Research, 39(9): 1751–1760

    CAS  Google Scholar 

  • Joo S H, Zhao D (2008) Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: Effects of catalyst and stabilizer. Chemosphere, 70(3): 418–425

    CAS  Google Scholar 

  • Keenan C R, Sedlak D L (2008) Factors affecting the yield ofoxidants from the reaction of nano-particulate zero-valent iron and oxygen. Environmental Science & Technology, 42(4): 1262–1267

    CAS  Google Scholar 

  • Kim C S, Rytuba J J, Brown G E Jr (2004) EXAFS study of mercury (II) sorption to Fe-and Al-(hydr) oxides: I. Effects of pH. Journal of Colloid and Interface Science, 271(1): 1–15

    CAS  Google Scholar 

  • Lee C, Sedlak D L (2008) Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen. Environmental Science & Technology, 42(22): 8528–8533

    CAS  Google Scholar 

  • Li L, Hu J, Shi X, Fan M, Luo J, Wei X (2016) Nanoscale zero-valent metals: A review of synthesis, characterization, and applications to environmental remediation. Environmental Science and Pollution Research International, 23(18): 17880–17900

    CAS  Google Scholar 

  • Li Y, Guo X, Dong H, Luo X, Guan X, Zhang X, Xia X (2018) Selenite removal from groundwater by zero-valent iron (ZVI) in combination with oxidants. Chemical Engineering Journal, 345: 432–440

    CAS  Google Scholar 

  • Liang L, Sun W, Guan X, Huang Y, Choi W, Bao H, Li L, Jiang Z (2014) Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron. Water Research, 49: 371–380

    CAS  Google Scholar 

  • Luo X, Guo X, Xia X, Zhang X, Ma N, Leng S, Ullah S, Ayalew Z M (2020) Rapid and long-effective removal of phosphate from water by zero-valent iron in combination with hypochlorite (ZVI/NaClO). Chemical Engineering Journal, 382: 122835–122844

    CAS  Google Scholar 

  • Mackenzie P D, Horney D P, Sivavec T M (1999) Mineral precipitation and porosity losses in granular iron columns. Journal of Hazardous Materials, 68(1–2): 1–17

    CAS  Google Scholar 

  • Mercer K L, Tobiason J E (2008) Removal of arsenic from high ionic strength solutions: effects of ionic strength, pH, and pre-formed versus in situ formed HFO. Environmental Science & Technology, 42(10): 3797–3802

    CAS  Google Scholar 

  • Neumann A, Kaegi R, Voegelin A, Hussam A, Munir A K, Hug S J (2013) Arsenic removal with composite iron matrix filters in Bangladesh: A field and laboratory study. Environmental Science & Technology, 47(9): 4544–4554

    CAS  Google Scholar 

  • Noubactep C (2008) A critical review on the process of contaminant removal in Fe0-H2O systems. Environmental Technology, 29(8): 909–920

    CAS  Google Scholar 

  • Noubactep C (2010) The fundamental mechanism of aqueous contaminant removal by metallic iron. Water S.A., 36(5): 663–670

    CAS  Google Scholar 

  • Qu Z, Su T, Chen Y, Lin X, Yu Y, Zhu S, Xie X, Huo M (2019) Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method. Frontiers of Environmental Science & Engineering, 13(6): 94

    CAS  Google Scholar 

  • Randall S R, Sherman D M, Ragnarsdottir K V, Collins C R (1999) The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochimica et Cosmochimica Acta, 63(19–20): 2971–2987

    CAS  Google Scholar 

  • Simões A M, Fernandes J C S (2010) Studying phosphate corrosion inhibition at the cut edge of coil coated galvanized steel using the SVET and EIS. Progress in Organic Coatings, 69(2): 219–224

    Google Scholar 

  • Sleiman N, Deluchat V, Wazne M, Courtin A, Saad Z, Kazpard V, Baudu M (2016a) Role of iron oxidation byproducts in the removal of phosphate from aqueous solution. RSC Advances, 6(2): 1627–1636

    CAS  Google Scholar 

  • Sleiman N, Deluchat V, Wazne M, Mallet M, Courtin-Nomade A, Kazpard V, Baudu M (2016b) Phosphate removal from aqueous solution using ZVI/sand bed reactor: Behavior and mechanism. Water Research, 99: 56–65

    CAS  Google Scholar 

  • Sun F, Osseo-Asare K A, Chen Y, Dempsey B A (2011) Reduction of As(V) to As(III) by commercial ZVI or As(0) with acid-treated ZVI. Journal of Hazardous Materials, 196: 311–317

    CAS  Google Scholar 

  • Sun H, Wang L, Zhang R, Sui J, Xu G (2006) Treatment of groundwater polluted by arsenic compounds by zero valent iron. Journal of Hazardous Materials, 129(1–3): 297–303

    CAS  Google Scholar 

  • Sun Y, Li J, Huang T, Guan X (2016) The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review. WaterResearch, 100: 277–295

    CAS  Google Scholar 

  • Ullah S, Faiz P, Leng S (2020a) Synthesis, mechanism and performance assessment of zero-valent iron for metal-contaminated water remediation: A Review. Clean-Soil, Air, Water, 2000080

  • Ullah S, Guo X, Luo X, Zhang X, Ma N, Leng S, Faiz P (2020b) The coupling of sand with ZVI/oxidants achieved proportional and highly efficient removal of arsenic. Frontiers of Environmental Science & Engineering, 14(6): 94

    CAS  Google Scholar 

  • Wang X, Lian W, Sun X, Ma J, Ning P (2018) Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution. Frontiers of Environmental Science & Engineering, 12(4): 9

    Google Scholar 

  • Weisener C G, Sale K S, Smyth D J, Blowes D W (2005) Field column study using zero-valent iron for mercury removal from contaminated groundwater. Environmental Science & Technology, 39(16): 6306–6312

    CAS  Google Scholar 

  • Wen Z, Zhang Y, Dai C (2014) Removal of phosphate from aqueous solution using nanoscale zero-valent iron (nZVI). Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 457: 433–440

    CAS  Google Scholar 

  • Westerhoff P, James J (2003) Nitrate removal in zero-valent iron packed columns. Water Research, 37(8): 1818–1830

    CAS  Google Scholar 

  • Xu J, Hao Z, Xie C, Lv X, Yang Y, Xu X (2012) Promotion effect of Fe2+ and Fe3O4 on nitrate reduction using zero-valent iron. Desalination, 84: 9–13

    Google Scholar 

  • Yang G C, Lee H L (2005) Chemical reduction of nitrate by nanosized iron: Kinetics and pathways. Water Research, 39(5): 884–894

    CAS  Google Scholar 

  • Yang Z, Shan C, Zhang W, Jiang Z, Guan X, Pan B (2016) Temporospatial evolution and removal mechanisms of As(V) and Se(VI) in ZVI column with H2O2 as corrosion accelerator. Water Research, 106: 461–469

    CAS  Google Scholar 

  • Yoon I H, Kim K W, Bang S, Kim M G (2011) Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion. Applied Catalysis B: Environmental, 104(1–2): 185–192

    CAS  Google Scholar 

  • Zhang H, Jin Z H, Lu H, Qin C H (2006) Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate. Transactions of Nonferrous Metals Society of China, 16: s345–s349

    Google Scholar 

  • Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review. Environmental Science & Technology, 50(14): 7290–7304

    CAS  Google Scholar 

  • Zubielewicz M, Gnot W (2004) Mechanisms ofnon-toxic anticorrosive pigments in organic waterborne coatings. Progress in Organic Coatings, 49(4): 358–371

    CAS  Google Scholar 

Download references

Acknowledgements

Authors greatly acknowledge the support from the National Natural Science Foundation of China (Grant No. 21876011), the National Key Research and Development Program of China (No. 2017YFA0605001), and the Fund for Innovative Research Group of the National Natural Science Foundation of China (No. 51721093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Guo.

Additional information

Highlights

• The coupling of oxidants with ZVI overcome the impedance of ZVI passive layer.

• ZVI/oxidants system achieved fast and long-effective removal of contaminants.

• Multiple mechanisms are involved in contaminants removal by ZVI/oxidant system.

• ZVI/Oxidants did not change the reducing property of ORP in the fixed-bed system.

Special Issue—Accounts of Aquatic Chemistry and Technology Research

Sana Ullah received his M.S. degree in environmental science from Comsats Institute of Information Technology, Abbotta-bad, Pakistan. He is currently a Ph.D. student at School of Environment, Beijing Normal University, China, under the direct supervision of Dr. Xuejun Guo. His scientific activity is focused on the remediation of metals contaminated water by iron-based material.

Xuejun Guo is a professor and engineering researcher at the State Key Laboratory of Water Environment Simulation, Beijing Normal University, China. His scientific activity is focused on the development of cheap and efficient iron-based materials and activation techniques to remove heavy metals in water. Also, to explore the microinterface process and molecular mechanism of heavy metals (such as arsenic) on the surface of iron-based materials at the nanoscale and molecular level. In recent years, he has contributed in the field of environmental biochemistry, using the most advanced single-molecule fluorescence imaging methods in the world. He studied the particle size distribution and quasi-distribution of molecular clusters of hydrophobic organic pollutants (HOCs) in the aqueous phase at high spatial and temporal resolution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, S., Guo, X., Luo, X. et al. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants. Front. Environ. Sci. Eng. 14, 89 (2020). https://doi.org/10.1007/s11783-020-1268-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-020-1268-3

Keywords

Navigation