Skip to main content
Log in

A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health. Non-thermal plasma (NTP) technologies are newly developed methods and became a research trend in recent years regarding the removal of VOCs from the air stream. Due to its unique characteristics, such as rapid response at room temperature, bulk homogenized volume, high reaction efficiency, dielectric barrier discharge (DBD) plasma technology is considered one of the most promising techniques of NTP. This paper reviews recent progress of DBD plasma technology for abatement of VOCs. The principle of plasma generation in DBD and its configurations (electrode, discharge gap, dielectric barrier material, etc.) are discussed in details. Based on previously published literature, attention has been paid on the effect of DBD configuration on the removal of VOCs. Effect of various process parameters such as initial concentration, gas feeding rate, oxygen content and input power on VOCs removal are also considered. Moreover, the role of catalysis and inhibitors in VOCs removal by DBD system are presented. Finally, a modified configuration of the DBD reactor, i.e. double dielectric barrier discharge (DDBD) for the abatement of VOCs is discussed. It was suggested that the DDBD plasma reactor could be used for higher conversion efficiency as well as for avoiding solid residue deposition on the electrode. These depositions can interfere with the performance of the reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas N, Hussain M, Russo N, Saracco G (2011). Studies on the activity and deactivation of novel optimized TiO2 nanoparticles for the abatement of VOCs. Chemical Engineering Journal, 175: 330–340

    Article  CAS  Google Scholar 

  • Abd Allah Z, Whitehead J C, Martin P (2014). Remediation of dichloromethane (CH2Cl2) using non-thermal, atmospheric pressure plasma generated in a packed-bed reactor. Environmental Science & Technology, 48(1): 558–565

    Article  CAS  Google Scholar 

  • Abdelaziz A A, Ishijima T, Seto T (2018). Humidity effects on surface dielectric barrier discharge for gaseous naphthalene decomposition. Physics of Plasmas, 25(4): 043512 (1–9)

    Article  CAS  Google Scholar 

  • Abdullah A Z, Bakar M Z A, Bhatia S (2006). Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst. Journal of Hazardous Materials, 129(1–3): 39–49

    Article  CAS  Google Scholar 

  • Abedi K, Ghorbani-Shahna F, Jaleh B, Bahrami A, Yarahmadi R (2014). Enhanced performance of non-thermal plasma coupled with TiO2/ GAC for decomposition of chlorinated organic compounds: influence of a hydrogen-rich substance. Journal of Environmental Health Science & Engineering, 12(1): 119

    Article  CAS  Google Scholar 

  • Abedi K, Ghorbani-Shahna F, Jaleh B, Bahrami A, Yarahmadi R, Haddadi R, Gandomi M (2015). Decomposition of chlorinated volatile organic compounds (CVOCs) using NTP coupled with TiO2/ GAC, ZnO/GAC, and TiO2–ZnO/GAC in a plasma-assisted catalysis system. Journal of Electrostatics, 73: 80–88

    Article  CAS  Google Scholar 

  • Abou Saoud W, Assadi A A, Guiza M, Bouzaza A, Aboussaoud W, Soutrel I, Ouederni A, Wolbert D, Rtimi S (2018). Abatement of ammonia and butyraldehyde under non-thermal plasma and photocatalysis: Oxidation processes for the removal of mixture pollutants at pilot scale. Chemical Engineering Journal, 344: 165–172

    Article  CAS  Google Scholar 

  • Aggelopoulos C A, Tataraki D, Rassias G (2018). Degradation of atrazine in soil by dielectric barrier discharge plasma–Potential singlet oxygen mediation. Chemical Engineering Journal, 347: 682–694

    Article  CAS  Google Scholar 

  • Aranzabal A, Romero-Sáez M, Elizundia U, González-Velasco J R, Gonzlez-Marcos J A (2012). Deactivation of H-zeolites during catalytic oxidation of trichloroethylene. Journal of Catalysis, 296: 165–174

    Article  CAS  Google Scholar 

  • Ashford B, Tu X (2017). Non-thermal plasma technology for the conversion of CO2. Current Opinion in Green and Sustainable Chemistry, 3: 45–49

    Article  Google Scholar 

  • Bahri M, Haghighat F, Rohani S, Kazemian H (2016). Impact of design parameters on the performance of non-thermal plasma air purification system. Chemical Engineering Journal, 302: 204–212

    Article  CAS  Google Scholar 

  • Bahri M, Haghighat F, Rohani S, Kazemian H (2017). Metal organic frameworks for gas-phase VOCs removal in a NTP-catalytic reactor. Chemical Engineering Journal, 320: 308–318

    Article  CAS  Google Scholar 

  • Barbusinski K, Kalemba K, Kasperczyk D, Urbaniec K, Kozik V (2017). Biological methods for odor treatment–A review. Journal of Cleaner Production, 152: 223–241

    Article  CAS  Google Scholar 

  • Bo Z, Hao H, Yang S, Zhu J, Yan J, Cen K (2018). Vertically-oriented graphenes supported Mn3O4 as advanced catalysts in post plasmacatalysis for toluene decomposition. Applied Surface Science, 436: 570–578

    Article  CAS  Google Scholar 

  • Boycheva S, Zgureva D, Václavíková M, Kalvachev Y, Lazarova H, Popova M (2018). Studies on non-modified and copper-modified coal ash zeolites as heterogeneous catalysts for VOCs oxidation. Journal of Hazardous Materials, 361: 374–382

    Article  CAS  Google Scholar 

  • Brandenburg R (2017). Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Science & Technology, 26(5): 1–29

    Article  Google Scholar 

  • Byeon J H, Park J H, Jo Y S, Yoon K Y, Hwang J (2010). Removal of gaseous toluene and submicron aerosol particles using a dielectric barrier discharge reactor. Journal of Hazardous Materials, 175(1–3): 417–422

    Article  CAS  Google Scholar 

  • Carabineiro S A C, Chen X, Martynyuk O, Bogdanchikova N, Avalos-Borja M, Pestryakov A, Tavares P B, Órfão J J M, Pereira M F R, Figueiredo J L (2015). Gold supported on metal oxides for volatile organic compounds total oxidation. Catalysis Today, 244: 103–114

    Article  CAS  Google Scholar 

  • Chang C L, Lin T S (2005). Decomposition of toluene and acetone in packed dielectric barrier discharge reactors. Plasma Chemistry and Plasma Processing, 25(3): 227–243

    Article  CAS  Google Scholar 

  • Chang T, Shen Z, Huang Y, Lu J, Ren D, Sun J, Cao J, Liu H (2018). Post-plasma-catalytic removal of toluene using MnO2–Co3O4 catalysts and their synergistic mechanism. Chemical Engineering Journal, 348: 15–25

    Article  CAS  Google Scholar 

  • Chavadej S, Kiatubolpaiboon W, Rangsunvigit P, Sreethawong T (2007). A combined multistage corona discharge and catalytic system for gaseous benzene removal. Journal of Molecular Catalysis A Chemical, 263(1–2): 128–136

    Article  CAS  Google Scholar 

  • Chen H L, Lee H M, Chen S H, Chang M B, Yu S J, Li S N (2009a). Removal of volatile organic compounds by single-stage and twostage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environmental Science & Technology, 43(7): 2216–2227

    Article  CAS  Google Scholar 

  • Chen J, Su Q, Pan H, Wei J, Zhang X, Shi Y (2009b). Influence of balance gas mixture on decomposition of dimethyl sulfide in a wirecylinder pulse corona reactor. Chemosphere, 75(2): 261–265

    Article  CAS  Google Scholar 

  • Chen J, Xie Z, Tang J, Zhou J, Lu X, Zhao H (2016). Oxidation of toluene by dielectric barrier discharge with photo-catalytic electrode. Chemical Engineering Journal, 284: 166–173

    Article  CAS  Google Scholar 

  • Chiper A S, Blin-Simiand N, Heninger M, Mestdagh H, Boissel P, Jorand F, Lemaire J, Leprovost J, Pasquiers S, Popa G, Christian P (2009). Detailed characterization of 2-heptanone conversion by dielectric barrier discharge in N2 and N2/O2 mixtures. The Journal of Physical Chemistry A, 114(1): 397–407

    Article  CAS  Google Scholar 

  • Choi S, Lee M S, Park D W (2014). Photocatalytic performance of TiO2/ V2O5 nanocomposite powder prepared by DC arc plasma. Current Applied Physics, 14(3): 433–438

    Article  Google Scholar 

  • Crowley B (2015). On the electrical conductivity of plasmas and metals. arXiv preprint arXiv:1508.06101. Available online at https://arxiv. org/ftp/arxiv/papers/1508/1508.06101.pdf (accessed January 10, 2019)

    Google Scholar 

  • Dai Q, Wang X, Lu G (2008). Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation. Applied Catalysis B: Environmental, 81(3–4): 192–202

    Article  CAS  Google Scholar 

  • Delagrange S, Pinard L, Tatibouët J M (2006). Combination of a nonthermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts. Applied Catalysis B: Environmental, 68(3–4): 92–98

    Article  CAS  Google Scholar 

  • Dinh M N, Giraudon J M, Vandenbroucke A, Morent R, De Geyter N, Lamonier J F (2016). Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air. Journal of Hazardous Materials, 314: 88–94

    Article  CAS  Google Scholar 

  • Dobslaw D, Ortlinghaus O, Dobslaw C (2018). A combined process of non-thermal plasma and a low-cost mineral adsorber for VOC removal and odor abatement in emissions of organic waste treatment plants. Journal of Environmental Chemical Engineering, 6(2): 2281–2289

    Article  CAS  Google Scholar 

  • Dors M, Tomasz Izdebski, Mateusz Tanski, Mizeraczyk J (2014). The influence of hydrogen sulphide and configuration of a DBD reactor powered with nanosecond high voltage pulses on hydrogen production from biogas. European Chemical Bulletin, 3(8): 798–804

    CAS  Google Scholar 

  • Dou B, Liu D, Zhang Q, Zhao R, Hao Q, Bin F, Cao J (2017). Enhanced removal of toluene by dielectric barrier discharge coupling with Cu-Ce-Zr supported ZSM-5/TiO2/Al2O3. Catalysis Communications, 92: 15–18

    Article  CAS  Google Scholar 

  • Fan X, Zhu T, Sun Y, Yan X (2011). The roles of various plasma species in the plasma and plasma-catalytic removal of low-concentration formaldehyde in air. Journal of Hazardous Materials, 196: 380–385

    Article  CAS  Google Scholar 

  • Fan X, Zhu T L, Wang M Y, Li X M (2009). Removal of lowconcentration BTX in air using a combined plasma catalysis system. Chemosphere, 75(10): 1301–1306

    Article  CAS  Google Scholar 

  • Feng X, Liu H, He C, Shen Z, Wang T (2018). Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: a review. Catalysis Science & Technology, 8(4): 936–954

    Article  CAS  Google Scholar 

  • Florian J, Merbahi N, Wattieaux G, Plewa J M, Yousfi M (2015). Comparative studies of double dielectric barrier discharge and microwave argon plasma jets at atmospheric pressure for biomedical applications. IEEE Transactions on Plasma Science, 43(9): 3332–3338

    Article  CAS  Google Scholar 

  • Fridman A (2008). Plasma Chemistry. New York: Cambridge University Press

    Book  Google Scholar 

  • Futamura S, Sugasawa M (2008). Additive effect on energy efficiency and byproduct distribution in VOC decomposition with nonthermal plasma. IEEE Transactions on Industry Applications, 44(1): 40–45

    Article  CAS  Google Scholar 

  • Gandhi M S, Mok Y S (2012). Decomposition of trifluoromethane in a dielectric barrier discharge non-thermal plasma reactor. Journal of Environmental Sciences-China, 24(7): 1234–1239

    Article  CAS  Google Scholar 

  • Ge H, Hu D, Li X, Tian Y, Chen Z, Zhu Y (2015). Removal of lowconcentration benzene in indoor air with plasma-MnO2 catalysis system. Journal of Electrostatics, 76: 216–221

    Article  CAS  Google Scholar 

  • Guo L J, Jiang N, Li J, Shang K F, Lu N, Wu Y (2018a). Abatament of mixed volatile organic cmpounds in a catalytic hybrid surface/packed discharge plasma reactor. Frontiers of Environmental Science & Engineering, 12(2): 15

    Article  CAS  Google Scholar 

  • Guo T, Du X, Peng Z, Xu L, Dong J, Li J, Cheng P, Zhou Z (2017). Quantification and risk assessment of organic products resulting from non-thermal plasma removal of toluene in nitrogen. Rapid Communications in Mass Spectrometry, 31(17): 1424–1430

    Article  CAS  Google Scholar 

  • Guo T, Li X, Li J, Peng Z, Xu L, Dong J, Cheng P, Zhou Z (2018b). Online quantification and human health risk assessment of organic byproducts from the removal of toluene in air using non-thermal plasma. Chemosphere, 194: 139–146

    Article  CAS  Google Scholar 

  • Guo Y, Liao X, He J, Ou W, Ye D (2010). Effect of manganese oxide catalyst on the dielectric barrier discharge decomposition of toluene. Catalysis Today, 153(3–4): 176–183

    Article  CAS  Google Scholar 

  • Guo Y F, Ye D Q, Chen K F, He J C, Chen W L (2006). Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. Journal of Molecular Catalysis A Chemical, 245(1–2): 93–100

    Article  CAS  Google Scholar 

  • Harling A M, Glover D J, Whitehead J C, Zhang K (2009). The role of ozone in the plasma-catalytic destruction of environmental pollutants. Applied Catalysis B: Environmental, 90(1–2): 157–161

    Article  CAS  Google Scholar 

  • Hosseinzadeh A, Najafpoor A A, Jafari A J, Jazani R K, Baziar M, Bargozin H, Piranloo F G (2018). Application of response surface methodology and artificial neural network modeling to assess nonthermal plasma efficiency in simultaneous removal of BTEX from waste gases: Effect of operating parameters and prediction performance. Process Safety and Environmental Protection, 119: 261–270

    Article  CAS  Google Scholar 

  • Hu J, Jiang N, Li J, Shang K, Lu N, Wu Y (2016). Degradation of benzene by bipolar pulsed series surface/packed-bed discharge reactor over MnO2–TiO2/zeolite catalyst. Chemical Engineering Journal, 293: 216–224

    Article  CAS  Google Scholar 

  • Huang H, Ye D, Guan X (2008). The simultaneous catalytic removal of VOCs and O3 in a post-plasma. Catalysis Today, 139(1–2): 43–48

    Article  CAS  Google Scholar 

  • Iijima S, Nakamura M, Yokoi A, Kubota M, Huang L, Matsuda H (2011). Decomposition of dichloromethane and in situ alkali absorption of resulting halogenated products by a packed-bed nonthermal plasma reactor. Journal of Material Cycles and Waste Management, 13(3): 206–212

    Article  CAS  Google Scholar 

  • Indarto A, Choi J W, Lee H, Song H K (2008). Decomposition of greenhouse gases by plasma. Environmental Chemistry Letters, 6(4): 215–222

    Article  CAS  Google Scholar 

  • Iwamura Y, Saito Y (2015). Enhanced decomposition of benzene by non-thermal atmospheric pressure plasma with oxidized titanium electrode. IEEJ Transactions on Fundamentals and Materials, 135(1): 17–21

    Article  Google Scholar 

  • Jarrige J, Vervisch P (2009). Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2-based catalyst. Applied Catalysis B: Environmental, 90(1–2): 74–82

    Article  CAS  Google Scholar 

  • Jia Z, Vega-Gonzalez A, Amar M B, Hassouni K, Tieng S, Touchard S, Kanaev A, Duten X (2013). Acetaldehyde removal using a diphasic process coupling a silver-based nano-structured catalyst and a plasma at atmospheric pressure. Catalysis Today, 208: 82–89

    Article  CAS  Google Scholar 

  • Jiang L, Nie G, Zhu R, Wang J, Chen J, Mao Y, Cheng Z, Anderson W A (2017). Efficient degradation of chlorobenzene in a non-thermal plasma catalytic reactor supported on CeO2/HZSM-5 catalysts. Journal of Environmental Sciences-China, 55: 266–273

    Article  Google Scholar 

  • Jiang N, Hu J, Li J, Shang K, Lu N, Wu Y (2016). Plasma-catalytic degradation of benzene over Ag–Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Applied Catalysis B: Environmental, 184: 355–363

    Article  CAS  Google Scholar 

  • Jiang N, Lu N, Shang K, Li J, Wu Y (2013). Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation. Journal of Hazardous Materials, 262: 387–393

    Article  CAS  Google Scholar 

  • Kamal M S, Razzak S A, Hossain M M (2016). Catalytic oxidation of volatile organic compounds (VOCs)–A review. Atmospheric Environment, 140: 117–134

    Article  CAS  Google Scholar 

  • Karatum O, Deshusses M A (2016). A comparative study of dilute VOCs treatment in a non-thermal plasma reactor. Chemical Engineering Journal, 294: 308–315

    Article  CAS  Google Scholar 

  • Karuppiah J, Reddy P M K, Reddy E L, Subrahmanyam C (2013). Catalytic non-thermal plasma reactor for decomposition of dilute chlorobenzene. Plasma Processes and Polymers, 10(12): 1074–1080

    Article  CAS  Google Scholar 

  • Keidar M, Beilis I (2018). Plasma Engineering, 2nd Edition. Cambridge, Massachusetts: Academic Press, 3–100

    Book  Google Scholar 

  • Khoja A H, Tahir M, Amin N A S (2017). Dry reforming of methane using different dielectric materials and DBD plasma reactor configurations. Energy Conversion and Management, 144: 262–274

    Article  CAS  Google Scholar 

  • Kim D H, Mok Y S, Lee S B (2011). Effect of temperature on the decomposition of trifluoromethane in a dielectric barrier discharge reactor. Thin Solid Films, 519(20): 6960–6963

    Article  CAS  Google Scholar 

  • Kim H H, Lee Y H, Ogata A, Futamura S (2003). Plasma-driven catalyst processing packed with photocatalyst for gas-phase benzene decomposition. Catalysis Communications, 4(7): 347–351

    Article  CAS  Google Scholar 

  • Kim H H, Ogata A, Futamura S (2006). Effect of different catalysts on the decomposition of VOCS using flow-type plasma-driven catalysis. IEEE Transactions on Plasma Science, 34(3): 984–995

    Article  CAS  Google Scholar 

  • Kim H H, Oh S M, Ogata A, Futamura S (2004). Decomposition of benzene using Ag/TiO2 packed plasma-driven catalyst reactor: influence of electrode configuration and Ag-loading amount. Catalysis Letters, 96(3–4): 189–194

    Article  CAS  Google Scholar 

  • Kim H H, Oh S M, Ogata A, Futamura S (2005). Decomposition of gasphase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst. Applied Catalysis B: Environmental, 56(3): 213–220

    Article  CAS  Google Scholar 

  • Kim H H, Teramoto Y, Negishi N, Ogata A (2015). A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 256: 13–22

    Article  CAS  Google Scholar 

  • Kim K H, Szulejko J E, Kumar P, Kwon E E, Adelodun A A, Reddy P A K (2017). Air ionization as a control technology for off-gas emissions of volatile organic compounds. Environmental Pollution, 225: 729–743

    Article  CAS  Google Scholar 

  • Kim K J, Kim J, Son Y S, Chung S G, Kim J C (2012). Advanced oxidation of aromatic VOCs using a pilot system with electron beam–catalyst coupling. Radiation Physics and Chemistry, 81(5): 561–565

    Article  CAS  Google Scholar 

  • Klett C, Duten X, Tieng S, Touchard S, Jestin P, Hassouni K, Vega-González A (2014). Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: Role of the adsorption process. Journal of Hazardous Materials, 279: 356–364

    Article  CAS  Google Scholar 

  • Kogelschatz U (2003). Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing, 23(1): 1–46

    Article  CAS  Google Scholar 

  • Kogelschatz U, Eliasson B, Egli W (1997). Dielectric-barrier discharges. Principle and applications. Le Journal de Physique IV, 07(C4): C4–47–C44–66

    Google Scholar 

  • Kraus M, Eliasson B, Kogelschatz U, Wokaun A (2001). CO2 reforming of methane by the combination of dielectric-barrier discharges and catalysis. Physical Chemistry Chemical Physics, 3(3): 294–300

    Article  CAS  Google Scholar 

  • Kundu S K, Kennedy E M, Gaikwad V V, Molloy T S, Dlugogorski B Z (2012). Experimental investigation of alumina and quartz as dielectrics for a cylindrical double dielectric barrier discharge reactor in argon diluted methane plasma. Chemical Engineering Journal, 180: 178–189

    Article  CAS  Google Scholar 

  • Kwong C W, Chao C Y H, Hui K S, Wan M P (2008). Removal of VOCs from indoor environment by ozonation over different porous materials. Atmospheric Environment, 42(10): 2300–2311

    Article  CAS  Google Scholar 

  • Lee H M, Chang M B (2003). Abatement of gas-phase p-xylene via dielectric barrier discharges. Plasma Chemistry and Plasma Processing, 23(3): 541–558

    Article  CAS  Google Scholar 

  • Li Y, Fan Z, Shi J, Liu Z, Shangguan W (2014). Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts. Chemical Engineering Journal, 241: 251–258

    Article  CAS  Google Scholar 

  • Liang W J, Fang H P, Li J, Zheng F, Li J X, Jin Y Q (2011). Performance of non-thermal DBD plasma reactor during the removal of hydrogen sulfide. Journal of Electrostatics, 69(3): 206–213

    Article  CAS  Google Scholar 

  • Liang W J, Li J, Li J X, Zhu T, Jin Y Q (2010). Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma. Journal of Hazardous Materials, 175(1–3): 1090–1095

    Article  CAS  Google Scholar 

  • Liang W J, Ma L, Liu H, Li J (2013). Toluene degradation by nonthermal plasma combined with a ferroelectric catalyst. Chemosphere, 92(10): 1390–1395

    Article  CAS  Google Scholar 

  • Linga Reddy E, Biju V M, Subrahmanyam C (2012a). Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma. Applied Energy, 95: 87–92

    Article  CAS  Google Scholar 

  • Linga Reddy E, Karuppiah J, Renken A, Kiwi Minsker L, Subrahmanyam C (2012b). Kinetics of the decomposition of hydrogen sulfide in a dielectric barrier discharge reactor. Chemical Engineering & Technology, 35(11): 2030–2034

    Article  CAS  Google Scholar 

  • Lu B, Zhang X, Yu X, Feng T, Yao S (2006). Catalytic oxidation of benzene using DBD corona discharges. Journal of Hazardous Materials, 137(1): 633–637

    Article  CAS  Google Scholar 

  • Lu N, Li J, Wang X, Wang T, Wu Y (2012). Application of doubledielectric barrier discharge plasma for removal of pentachlorophenol from wastewater coupling with activated carbon adsorption and simultaneous regeneration. Plasma Chemistry and Plasma Processing, 32(1): 109–121

    Article  CAS  Google Scholar 

  • Ma C, Dai B, Liu P, Zhou N, Shi A, Ban L, Chen H (2014). Deep oxidative desulfurization of model fuel using ozone generated by dielectric barrier discharge plasma combined with ionic liquid extraction. Journal of Industrial and Engineering Chemistry, 20(5): 2769–2774

    Article  CAS  Google Scholar 

  • Ma T J, Lan W S (2015). Ethylene decomposition with a wire-plate dielectric barrier discharge reactor: parameters and kinetic study. International Journal of Environmental Science and Technology, 12(12): 3951–3956

    Article  CAS  Google Scholar 

  • Magureanu M, Mandache N B, Eloy P, Gaigneaux E M, Parvulescu V I (2005). Plasma-assisted catalysis for volatile organic compounds abatement. Applied Catalysis B: Environmental, 61(1–2): 12–20

    Article  CAS  Google Scholar 

  • Magureanu M, Mandache N B, Parvulescu V I, Subrahmanyam C, Renken A, Kiwi-Minsker L (2007). Improved performance of nonthermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Applied Catalysis B: Environmental, 74(3–4): 270–277

    Article  CAS  Google Scholar 

  • Mei D, Tu X (2017). Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: Effects of plasma processing parameters and reactor design. Journal of CO2 Utilization, 19: 68–78

    Article  CAS  Google Scholar 

  • Mfopara A, Kirkpatrick M J, Odic E (2009). Dilute methane treatment by atmospheric pressure dielectric barrier discharge: effects of water vapor. Plasma Chemistry and Plasma Processing, 29(2): 91–102

    Article  CAS  Google Scholar 

  • Mista W, Kacprzyk R (2008). Decomposition of toluene using nonthermal plasma reactor at room temperature. Catalysis Today, 137(2–4): 345–349

    Article  CAS  Google Scholar 

  • Mlotek M, Reda E, Józwik P, Krawczyk K, Bojar Z (2015). Plasmacatalytic decomposition of cyclohexane in gliding discharge reactor. Applied Catalysis A, General, 505: 150–158

    Article  CAS  Google Scholar 

  • Mok Y S, Lee S B, Oh J H, Ra K S, Sung B H (2008). Abatement of trichloromethane by using nonthermal plasma reactors. Plasma Chemistry and Plasma Processing, 28(6): 663–676

    Article  CAS  Google Scholar 

  • Mustafa M F, Fu X, Liu Y, Abbas Y, Wang H, Lu W (2018). Volatile organic compounds (VOCs) removal in non-thermal plasma double dielectric barrier discharge reactor. Journal of Hazardous Materials, 347: 317–324

    Article  CAS  Google Scholar 

  • Mustafa M F, Fu X, Lu W, Liu Y, Abbas Y, Wang H, Arslan M T (2017a). Application of non-thermal plasma technology on fugitive methane destruction: configuration and optimization of double dielectric barrier discharge reactor. Journal of Cleaner Production, 174: 670–677

    Article  CAS  Google Scholar 

  • Mustafa M F, Liu Y, Duan Z, Guo H, Xu S, Wang H, Lu W (2017b). Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. Journal of Hazardous Materials, 327: 35–43

    Article  CAS  Google Scholar 

  • Narengerile W T, Watanabe T (2012). Acetone decomposition by water plasmas at atmospheric pressure. Chemical Engineering Science, 69(1): 296–303

    Article  CAS  Google Scholar 

  • Nguyen H H, Kim K S (2015). Combination of plasmas and catalytic reactions for CO2 reforming of CH4 by dielectric barrier discharge process. Catalysis Today, 256(Part 1): 88–95

    Article  CAS  Google Scholar 

  • Ni M J, Shen X, Gao X, Wu Z L, Lu H, Li Z S, Luo Z Y, Cen K F (2011). Naphthalene decomposition in a DC corona radical shower discharge. Journal of Zhejiang University. Science A, 12(1): 71–77

    Article  CAS  Google Scholar 

  • Obradovic B M, Sretenovic G B, Kuraica M M (2011). A dual-use of DBD plasma for simultaneous NOx and SO2 removal from coalcombustion flue gas. Journal of Hazardous Materials, 185(2–3): 1280–1286

    Article  CAS  Google Scholar 

  • Oda T (2003). Non-thermal plasma processing for environmental protection: decomposition of dilute VOCs in air. Journal of Electrostatics, 57(3–4): 293–311

    Article  CAS  Google Scholar 

  • Oda T, Kumada A, Tanaka K, Takahashi T, Masuda S (1995). Low temperature atmospheric pressure discharge plasma processing for volatile organic compounds. Journal of Electrostatics, 35(1): 93–101

    Article  CAS  Google Scholar 

  • Ondarts M, Hajji W, Outin J, Bejat T, Gonze E (2017). Non-thermal plasma for indoor air treatment: toluene degradation in a corona discharge at ppbv levels. Chemical Engineering Research & Design, 118: 194–205

    Article  CAS  Google Scholar 

  • Pacheco M, Alva E, Valdivia R, Pacheco J, Rivera C, Santana A, Huertas J, Lefort B, Estrada N (2012). Removal of main exhaust gases of vehicles by a double dielectric barrier discharge. 14th Latin American Workshop on Plasma Physics (Lawpp 2011), 370: 1–7

    Google Scholar 

  • Padhi S K, Gokhale S (2014). Biological oxidation of gaseous VOCs–rotating biological contactor a promising and eco-friendly technique. Journal of Environmental Chemical Engineering, 2(4): 2085–2102

    Article  CAS  Google Scholar 

  • Park C W, Byeon J H, Yoon K Y, Park J H, Hwang J (2011). Simultaneous removal of odors, airborne particles, and bioaerosols in a municipal composting facility by dielectric barrier discharge. Separation and Purification Technology, 77(1): 87–93

    Article  CAS  Google Scholar 

  • Qin C, Guo H, Liu P, Bai W, Huang J, Huang X, Dang X, Yan D (2018). Toluene abatement through adsorption and plasma oxidation using ZSM-5 mixed with γ-Al2O3, TiO2 or BaTiO3. Journal of Industrial and Engineering Chemistry, 63: 449–455

    Article  CAS  Google Scholar 

  • Ragazzi M, Tosi P, Rada E C, Torretta V, Schiavon M (2014). Effluents from MBT plants: plasma techniques for the treatment of VOCs. Waste Management (New York, N.Y.), 34(11): 2400–2406

    Article  CAS  Google Scholar 

  • Raju B R, Reddy E L, Karuppiah J, Reddy P M K, Subrahmanyam C (2013). Catalytic non-thermal plasma reactor for the decomposition of a mixture of volatile organic compounds. Journal of Chemical Sciences, 125(3): 673–678

    Article  CAS  Google Scholar 

  • Rezaei E, Soltan J, Chen N (2013). Catalytic oxidation of toluene by ozone over alumina supported manganese oxides: effect of catalyst loading. Applied Catalysis B: Environmental, 136–137: 239–247

    Article  CAS  Google Scholar 

  • Roland U, Holzer F, Kopinke F D (2002). Improved oxidation of air pollutants in a non-thermal plasma. Catalysis Today, 73(3–4): 315–323

    Article  CAS  Google Scholar 

  • Roland U, Holzer F, Kopinke F D (2005). Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 2. Ozone decomposition and deactivation of γ-Al2O3. Applied Catalysis B: Environmental, 58(3–4): 217–226

    CAS  Google Scholar 

  • Rutscher A (2008). Characteristics of low-temperature plasmas under nonthermal conditions–a short summary. In: Hippler R, Kersten H, Schmidt M, Schoenbach K H, eds. Low Temperature Plasmas: Fundamentals, Technologies and Techniques, 2nd Edition. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 1: 1–14

    Google Scholar 

  • Schiavon M, Scapinello M, Tosi P, Ragazzi M, Torretta V, Rada E C (2015). Potential of non-thermal plasmas for helping the biodegradation of volatile organic compounds (VOCs) released by waste management plants. Journal of Cleaner Production, 104: 211–219

    Article  CAS  Google Scholar 

  • Schiavon M, Schiorlin M, Torretta V, Brandenburg R, Ragazzi M (2017a). Non-thermal plasma assisting the biofiltration of volatile organic compounds. Journal of Cleaner Production, 148: 498–508

    Article  CAS  Google Scholar 

  • Schiavon M, Torretta V, Casazza A, Ragazzi M (2017b). Non-thermal plasma as an innovative option for the abatement of volatile organic compounds: a review. Water, Air, and Soil Pollution, 228(10): 1–20

    Article  CAS  Google Scholar 

  • Schmidt M, Jõgi I, Holub M, Brandenburg R (2015). Non-thermal plasma based decomposition of volatile organic compounds in industrial exhaust gases. International Journal of Environmental Science and Technology, 12(12): 3745–3754

    Article  CAS  Google Scholar 

  • Shahna F, Bahrami A, Alimohammadi I, Yarahmadi R, Jaleh B, Gandomi M, Ebrahimi H, Ad-Din Abedi K (2017). Chlorobenzene degeradation by non-thermal plasma combined with EG-TiO2/ZnO as a photocatalyst: Effect of photocatalyst on CO2 selectivity and byproducts reduction. Journal of Hazardous Materials, 324: 544–553

    Article  CAS  Google Scholar 

  • Shi Y, Shao Z, Shou T, Tian R, Jiang J, He Y (2016). Abatement of gaseous xylene using double dielectric barrier discharge plasma with in situ UV light: operating parameters and byproduct analysis. Plasma Chemistry and Plasma Processing, 36(6): 1501–1515

    Article  CAS  Google Scholar 

  • Shu Y, Ji J, Xu Y, Deng J, Huang H, He M, Leung D Y C, Wu M, Liu S, Liu S, Liu G, Xie R, Feng Q, Zhan Y, Fang R, Ye X (2018). Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation. Applied Catalysis B: Environmental, 220: 78–87

    Article  CAS  Google Scholar 

  • Sivachandiran L, Karuppiah J, Subrahmanyam C (2012). DBD plasma reactor for oxidative decomposition of chlorobenzene. International Journal of Chemical Reactor Engineering, 10(1): 1–14

    Article  Google Scholar 

  • Sobacchi M G, Saveliev A V, Fridman A A, Gutsol A F, Kennedy L A (2003). Experimental assessment of pulsed corona discharge for treatment of VOC emissions. Plasma Chemistry and Plasma Processing, 23(2): 347–370

    Article  CAS  Google Scholar 

  • Song H, Hu F, Peng Y, Li K, Bai S, Li J (2018). Non-thermal plasma catalysis for chlorobenzene removal over CoMn/TiO2 and CeMn/ TiO2: Synergistic effect of chemical catalysis and dielectric constant. Chemical Engineering Journal, 347: 447–454

    Article  CAS  Google Scholar 

  • Song Y H, Kim S J, Choi K I, Yamamoto T (2002). Effects of adsorption and temperature on a nonthermal plasma process for removing VOCs. Journal of Electrostatics, 55(2): 189–201

    Article  CAS  Google Scholar 

  • Subrahmanyam C, Renken A, Kiwi-Minsker L (2006). Catalytic abatement of volatile organic compounds assisted by non-thermal plasma: Part II. Optimized catalytic electrode and operating conditions. Applied Catalysis B: Environmental, 65(1–2): 157–162

    CAS  Google Scholar 

  • Subrahmanyam C, Renken A, Kiwi-Minsker L (2010). Catalytic nonthermal plasma reactor for abatement of toluene. Chemical Engineering Journal, 160(2): 677–682

    Article  CAS  Google Scholar 

  • Sultana S, Vandenbroucke A M, Leys C, De Geyter N, Morent R (2015). Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: a review. Catalysts, 5(2): 718–746

    Article  CAS  Google Scholar 

  • Sultana S, Ye Z, Veerapandian S K P, Löfberg A, De Geyter N, Morent R, Giraudon J M, Lamonier J F (2018). Synthesis and catalytic performances of K-OMS-2, Fe/K-OMS-2 and Fe-K-OMS-2 in post plasma-catalysis for dilute TCE abatement. Catalysis Today, 307: 20–28

    Article  CAS  Google Scholar 

  • Tang X, Feng F, Ye L, Zhang X, Huang Y, Liu Z, Yan K (2013). Removal of dilute VOCs in air by post-plasma catalysis over Agbased composite oxide catalysts. Catalysis Today, 211: 39–43

    Article  CAS  Google Scholar 

  • Thevenet F, Guaitella O, Puzenat E, Guillard C, Rousseau A (2008). Influence of water vapour on plasma/photocatalytic oxidation efficiency of acetylene. Applied Catalysis B: Environmental, 84(3–4): 813–820

    Article  CAS  Google Scholar 

  • Thevenet F, Guillard C, Rousseau A (2014). Acetylene photocatalytic oxidation using continuous flow reactor: Gas phase and adsorbed phase investigation, assessment of the photocatalyst deactivation. Chemical Engineering Journal, 244: 50–58

    Article  CAS  Google Scholar 

  • Trinh Q H, Kim S H, Mok Y S (2016). Removal of dilute nitrous oxide from gas streams using a cyclic zeolite adsorption–plasma decomposition process. Chemical Engineering Journal, 302: 12–22

    Article  CAS  Google Scholar 

  • Vandenbroucke A M, Morent R, De Geyter N, Leys C (2011). Nonthermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 195: 30–54

    Article  CAS  Google Scholar 

  • Vandenbroucke A M, Nguyen Dinh M T, Nuns N, Giraudon J M, De Geyter N, Leys C, Lamonier J F, Morent R (2016). Combination of non-thermal plasma and Pd/LaMnO3 for dilute trichloroethylene abatement. Chemical Engineering Journal, 283: 668–675

    Article  CAS  Google Scholar 

  • Wang B, Yao S, Peng Y, Xu Y (2018). Toluene removal over TiO2-BaTiO3 catalysts in an atmospheric dielectric barrier discharge. Journal of Environmental Chemical Engineering, 6(4): 3819–3826

    Article  CAS  Google Scholar 

  • Wang C, Zhang G, Wang X (2012). Comparisons of discharge characteristics of a dielectric barrier discharge with different electrode structures. Vacuum, 86(7): 960–964

    Article  CAS  Google Scholar 

  • Wang S, Zhang L, Long C, Li A (2014). Enhanced adsorption and desorption of VOCs vapor on novel micro-mesoporous polymeric adsorbents. Journal of Colloid and Interface Science, 428: 185–190

    Article  CAS  Google Scholar 

  • Whitehead J C (2010). Plasma catalysis: A solution for environmental problems. Pure and Applied Chemistry, 82(6): 1329–1336

    Article  CAS  Google Scholar 

  • Wu T, Wang X (2015). Emission of oxygenated volatile organic compounds (OVOCs) during the aerobic decomposition of orange wastes. Journal of Environmental Sciences-China, 33: 69–77

    Article  CAS  Google Scholar 

  • Wu T, Wang X, Li D, Yi Z (2010). Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes. Atmospheric Environment, 44(39): 5065–5071

    Article  CAS  Google Scholar 

  • Xiao G, Xu W, Wu R, Ni M, Du C, Gao X, Luo Z, Cen K (2014). Nonthermal plasmas for VOCs abatement. Plasma Chemistry and Plasma Processing, 34(5): 1033–1065

    Article  CAS  Google Scholar 

  • Xu S, Lu W, Liu Y, Ming Z, Liu Y, Meng R, Wang H (2017a). Structure and diversity of bacterial communities in two large sanitary landfills in China as revealed by high-throughput sequencing. Waste Management, 63: 41–48

    Article  CAS  Google Scholar 

  • Xu X, Wu J, Xu W, He M, Fu M, Chen L, Zhu A, Ye D (2017b). Highefficiency non-thermal plasma-catalysis of cobalt incorporated mesoporous MCM-41 for toluene removal. Catalysis Today, 281: 527–533

    Article  CAS  Google Scholar 

  • Yan X, Sun Y, Zhu T, Fan X (2013). Conversion of carbon disulfide in air by non-thermal plasma. Journal of Hazardous Materials, 261: 669–674

    Article  CAS  Google Scholar 

  • Yang Z, Yi H, Tang X, Zhao S, Yu Q, Gao F, Zhou Y, Wang J, Huang Y, Yang K, Shi Y (2017). Potential demonstrations of “hot spots” presence by adsorption-desorption of toluene vapor onto granular activated carbon under microwave radiation. Chemical Engineering Journal, 319: 191–199

    Article  CAS  Google Scholar 

  • Ye T, Xiong Z, Yu J X, Jisong B (2016). Experimental study on biomass and gasification for hydrogen. Journal of Computational and Theoretical Nanoscience, 13(2): 1130–1135

    Article  CAS  Google Scholar 

  • Ye Z, Zhang Y, Li P, Yang L, Zhang R, Hou H (2008). Feasibility of destruction of gaseous benzene with dielectric barrier discharge. Journal of Hazardous Materials, 156(1–3): 356–364

    Article  CAS  Google Scholar 

  • Yi C H, Lee Y H, Woo Kim D, Yeom G Y (2003). Characteristic of a dielectric barrier discharges using capillary dielectric and its application to photoresist etching. Surface and Coatings Technology, 163–164: 723–727

    Article  Google Scholar 

  • Zhang H, Li K, Li L, Liu L, Meng X, Sun T, Jia J, Fan M (2018). High efficient styrene mineralization through novel NiO-TiO2-Al2O3 packed pre-treatment/treatment/post-treatment dielectric barrier discharge plasma. Chemical Engineering Journal, 343: 759–769

    Article  CAS  Google Scholar 

  • Zhang H, Li K, Shu C, Lou Z, Sun T, Jia J (2014a). Enhancement of styrene removal using a novel double-tube dielectric barrier discharge (DDBD) reactor. Chemical Engineering Journal, 256: 107–118

    Article  CAS  Google Scholar 

  • Zhang H, Li K, Sun T, Jia J, Lou Z, Feng L (2014b). Removal of styrene using dielectric barrier discharge plasmas combined with sol–gel prepared TiO2 coated γ-Al2O3. Chemical Engineering Journal, 241: 92–102

    Article  CAS  Google Scholar 

  • Zhang H, Li K, Sun T, Jia J, Lou Z, Yao S, Wang G (2015). The combination effect of dielectric barrier discharge (DBD) and TiO2 catalytic process on styrene removal and the analysis of the byproducts and intermediates. Research on Chemical Intermediates, 41(1): 175–189

    Article  CAS  Google Scholar 

  • Zhu R, Mao Y, Jiang L, Chen J (2015a). Performance of chlorobenzene removal in a nonthermal plasma catalysis reactor and evaluation of its byproducts. Chemical Engineering Journal, 279: 463–471

    Article  CAS  Google Scholar 

  • Zhu T, Li R R, Ma M F, Li X (2017). Influence of energy efficiency on VOCs decomposition in non-thermal plasma reactor. International Journal of Environmental Science and Technology, 14(7): 1505–1512

    Article  CAS  Google Scholar 

  • Zhu T, Li X, Zhao W, Xia N, Wang X (2015b). Experimental research on toluene degradation in plasma as the driving force of nanomaterials. Open Journal of Applied Sciences, 05(10): 586–594

    Article  CAS  Google Scholar 

  • Zhu T, Wang R, Bian W, Chen Y (2018). Advanced oxidation technology for H2S odor gas using non-thermal plasma. Plasma Science and Technology, 20(5): 1–6

    Article  CAS  Google Scholar 

  • Zhu X, Gao X, Qin R, Zeng Y, Qu R, Zheng C, Tu X (2015c). Plasmacatalytic removal of formaldehyde over Cu–Ce catalysts in a dielectric barrier discharge reactor. Applied Catalysis B: Environmental, 170–171: 293–300

    Article  CAS  Google Scholar 

  • Zhu X, Gao X, Yu X, Zheng C, Tu X (2015d). Catalyst screening for acetone removal in a single-stage plasma-catalysis system. Catalysis Today, 256: 108–114

    Article  CAS  Google Scholar 

  • Zhu X, Liu S, Cai Y, Gao X, Zhou J, Zheng C, Tu X (2016). Postplasma catalytic removalof methanol over Mn–Ce catalysts in an atmospheric dielectricbarrier discharge. Applied Catalysis B: Environmental, 183: 124–132

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFD1100605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjing Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Abbas, Y., Mustafa, M.F. et al. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds. Front. Environ. Sci. Eng. 13, 30 (2019). https://doi.org/10.1007/s11783-019-1108-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-019-1108-5

Keywords

Navigation