Skip to main content
Log in

Biogas and its opportunities—A review

  • Feature Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Biogas production is a well-established technology primarily for the generation of renewable energy and also for the valorization of organic residues. Biogas is the end product of a biological mediated process, the so called anaerobic digestion, in which different microorganisms, follow diverse metabolic pathways to decompose the organic matter. The process has been known since ancient times and was widely applied at domestic households providing heat and power for hundreds of years. Nowadays, the biogas sector is rapidly growing and novel achievements create the foundation for constituting biogas plants as advanced bioenergy factories. In this context, the biogas plants are the basis of a circular economy concept targeting nutrients recycling, reduction of greenhouse gas emissions and biorefinery purposes. This review summarizes the current state-of-the-art and presents future perspectives related to the anaerobic digestion process for biogas production. Moreover, a historical retrospective of biogas sector from the early years of its development till its recent advancements gives an outlook of the opportunities that are opening up for process optimisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Pühler A, Schlüter A. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnology for Biofuels, 2015, 8(1): 14

    Article  Google Scholar 

  2. Tsapekos P, Kougias P G, Angelidaki I. Anaerobic mono- and codigestion of mechanically pretreated meadow grass for biogas production. Energy & Fuels, 2015, 29(7): 4005–4010

    Article  CAS  Google Scholar 

  3. Søndergaard M M, Fotidis I A, Kovalovszki A, Angelidaki I. Anaerobic co-digestion of agricultural byproducts with manure for enhanced biogas production. Energy & Fuels, 2015, 29(12): 8088–8094

    Article  Google Scholar 

  4. Kougias P G, Boe K, Tsapekos P, Angelidaki I. Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresource Technology, 2014, 153(2): 198–205

    Article  CAS  Google Scholar 

  5. Labatut R A, Angenent L T, Scott N R. Biochemical methane potential and biodegradability of complex organic substrates. Bioresource Technology, 2011, 102(3): 2255–2264

    Article  CAS  Google Scholar 

  6. Zarkadas I, Dontis G, Pilidis G, Sarigiannis D A. Exploring the potential of fur farming wastes and byproducts as substrates to anaerobic digestion process. Renewable Energy, 2016, 96(2): 1063–1070

    Article  CAS  Google Scholar 

  7. Tsapekos P, Kougias P G, Treu L, Campanaro S, Angelidaki I. Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production. Applied Energy, 2017, 185(1): 126–135

    Article  CAS  Google Scholar 

  8. Li Y, Zhang R, Liu G, Chen C, He Y, Liu X. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresource Technology, 2013, 149(2): 565–569

    Article  CAS  Google Scholar 

  9. Kougias P G, Fotidis I A, Zaganas I D, Kotsopoulos T A, Martzopoulos G G. Zeolite and swine inoculum effect on poultry manure biomethanation. International Agrophysics, 2017, 27(2): 169–173

    Google Scholar 

  10. Fotidis I A, Kougias P G, Zaganas I D, Kotsopoulos T A, Martzopoulos G G. Inoculum and zeolite synergistic effect on anaerobic digestion of poultry manure. Environmental Technology, 2014, 35(9–12): 1219–1225

    Article  CAS  Google Scholar 

  11. Frigon J C, Guiot S R. Biomethane production from starch and lignocellulosic crops—A comparative review. Biofuels, Bioproducts & Biorefining, 2010, 4(4): 447–458

    Article  CAS  Google Scholar 

  12. O-Thong S, Boe K, AngelidakiI. Thermophilic anaerobic codigestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production. Applied Energy, 2012, 93(5): 648–654

    Article  CAS  Google Scholar 

  13. Menardo S, Cacciatore V, Balsari P. Batch and continuous biogas production arising from feed varying in rice straw volumes following pre-treatment with extrusion. Bioresource Technology, 2015, 180(36): 154–161

    Article  CAS  Google Scholar 

  14. Kougias P G, Boe K, Einarsdottir E S, Angelidaki I. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents. Water Research, 2015, 79(1): 119–127

    Article  CAS  Google Scholar 

  15. Li Y, Zhang R, Liu X, Chen C, Xiao X, Feng L, He Y, Liu G. Evaluating methane production from anaerobic mono- and codigestion of kitchen waste, corn stover, and chicken manure. Energy & Fuels, 2013, 27(4): 2085–2091

    Article  CAS  Google Scholar 

  16. Pagés-Díaz J, Pereda-Reyes I, Taherzadeh M J, Sárvári-Horváth I, Lundin M. Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: Synergistic and antagonistic interactions determined in batch digestion assays. Chemical Engineering Journal, 2014, 245(5): 89–98

    Article  Google Scholar 

  17. Davidsson A, Gruvberger C, Christensen T H, Hansen T L, Jansen J. Methane yield in source-sorted organic fraction of municipal solid waste. Waste Management (New York, N.Y.), 2007, 27(3): 406–414

    Article  CAS  Google Scholar 

  18. Borowski S, Domański J, Weatherley L. Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge. Waste Management (New York, N.Y.), 2014, 34(2): 513–521

    Article  CAS  Google Scholar 

  19. Cabbai V, Ballico M, Aneggi E, Goi D. BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Management (New York, N.Y.), 2013, 33(7): 1626–1632

    Article  CAS  Google Scholar 

  20. D’Este M, Alvarado-Morales M, Ciofalo A, Angelidaki I. Macroalgae Laminaria digitata and Saccharina latissima as potential biomasses for biogas and total phenolics production: Focusing on seasonal and spatial variations of the algae. Energy & Fuels, 2017, 31(7): 7166–7175

    Article  Google Scholar 

  21. Zhang C, Xiao G, Peng L, Su H, Tan T. The anaerobic co-digestion of food waste and cattle manure. Bioresource Technology, 2013, 129(2): 170–176

    Article  CAS  Google Scholar 

  22. Wei Y, Li X, Yu L, Zou D, Yuan H. Mesophilic anaerobic codigestion of cattle manure and corn stover with biological and chemical pretreatment. Bioresource Technology, 2015, 198(1): 431–436

    Article  CAS  Google Scholar 

  23. Kougias P G, Kotsopoulos T A, Martzopoulos G G. Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure. Renewable Energy, 2014, 69(3): 202–207

    Article  CAS  Google Scholar 

  24. Liu C, Li H, Zhang Y, Liu C. Improve biogas production from loworganic- content sludge through high-solids anaerobic co-digestion with food waste. Bioresource Technology, 2016, 219(1): 252–260

    Article  CAS  Google Scholar 

  25. Mata-Alvarez J, Dosta J, Macé S, Astals S. Codigestion of solid wastes: a review of its uses and perspectives including modeling. Critical Reviews in Biotechnology, 2011, 31(2): 99–111

    Article  CAS  Google Scholar 

  26. Dennehy C, Lawlor P G, Gardiner G E, Jiang Y, Cormican P, McCabe M S, Zhan X. Process stability and microbial community composition in pig manure and food waste anaerobic co-digesters operated at low HRTs. Frontiers of Environmental Science & Engineering, 2017, 11(3): 4

    Article  Google Scholar 

  27. Macias-Corral M, Samani Z, Hanson A, Smith G, Funk P, Yu H, Longworth J. Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresource Technology, 2008, 99(17): 8288–8293

    Article  CAS  Google Scholar 

  28. Angelidaki I, Ellegaard L. Codigestion of manure and organic wastes in centralized biogas plants: Status and future trends. Applied Biochemistry and Biotechnology, 2003, 109(1–3): 95–105

    Article  CAS  Google Scholar 

  29. Hosseini Koupaie E, Barrantes Leiva M, Eskicioglu C, Dutil C. Mesophilic batch anaerobic co-digestion of fruit-juice industrial waste and municipal waste sludge: Process and cost-benefit analysis. Bioresource Technology, 2014, 152(152C): 66–73

    Article  CAS  Google Scholar 

  30. Banks C J, Salter A M, Heaven S, Riley K. Energetic and environmental benefits of co-digestion of food waste and cattle slurry: A preliminary assessment. Resources, Conservation and Recycling, 2011, 56(1): 71–79

    Article  Google Scholar 

  31. Sosnowski P, Wieczorek A, Ledakowicz S. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Advances in Environmental Research, 2003, 7(3): 609–616

    Article  CAS  Google Scholar 

  32. Levén L, Eriksson A R B, Schnürer A. Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiology Ecology, 2007, 59(3): 683–693

    Article  Google Scholar 

  33. Luo G, De Francisci D, Kougias P G, Laura T, Zhu X, Angelidaki I. New steady-state microbial community compositions and process performances in biogas reactors induced by temperature disturbances. Biotechnology for Biofuels, 2015, 8(1): 3

    Article  Google Scholar 

  34. Zhu X, Treu L, Kougias P G, Campanaro S, Angelidaki I. Converting mesophilic upflow sludge blanket (UASB) reactors to thermophilic by applying axenic methanogenic culture bioaugmentation. Chemical Engineering Journal, 2018, 332(1): 508–516

    Article  CAS  Google Scholar 

  35. Angelidaki I, Boe K, Ellegaard L. Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants. Water Science and Technology, 2005, 52(1–2): 189–194

    CAS  Google Scholar 

  36. Suhartini S, Heaven S, Banks C J. Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: performance, dewaterability and foam control. Bioresource Technology, 2014, 152(1): 202–211

    Article  CAS  Google Scholar 

  37. Bouallagui H, Haouari O, Touhami Y, Ben Cheikh R, Marouani L, Hamdi M. Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste. Process Biochemistry, 2004, 39(12): 2143–2148

    Article  CAS  Google Scholar 

  38. Labatut R A, Angenent L T, Scott N R. Conventional mesophilic vs. thermophilic anaerobic digestion: A trade-off between performance and stability? Water Research, 2014, 53(8): 249–258

    Article  CAS  Google Scholar 

  39. Ghasimi D S M, Tao Y, de Kreuk M, Zandvoort M H, van Lier J B. Microbial population dynamics during long-term sludge adaptation of thermophilic and mesophilic sequencing batch digesters treating sewage fine sieved fraction at varying organic loading rates. Biotechnology for Biofuels, 2015, 8(1): 171

    Article  Google Scholar 

  40. Watanabe H, Kitamura T, Ochi S, Ozaki M. Inactivation of pathogenic bacteria under mesophilic and thermophilic conditions. Water Science and Technology, 1997, 36(36): 25–32

    CAS  Google Scholar 

  41. Pandey P K, Soupir M L. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures. AMB Express, 2011, 1(1): 18

    Article  Google Scholar 

  42. Angelidaki I, Ahring B K. Anaerobic thermophilic digestion of manure at different ammonia loads: Effect of temperature. Water Research, 1994, 28(3): 727–731

    Article  CAS  Google Scholar 

  43. Tezel U, Tandukar M, Hajaya M G, Pavlostathis S G. Transition of municipal sludge anaerobic digestion from mesophilic to thermophilic and long-term performance evaluation. Bioresource Technology, 2014, 170(5): 385–394

    Article  CAS  Google Scholar 

  44. Zhu X, Treu L, Kougias P G, Campanaro S, Angelidaki I. Characterization of the planktonic microbiome in upflow anaerobic sludge blanket reactors during adaptation of mesophilic methanogenic granules to thermophilic operational conditions. Anaerobe, 2017, 46(1): 69–77

    Article  CAS  Google Scholar 

  45. Tian Z, Zhang Y, Li Y, Chi Y, Yang M. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Water Research, 2015, 69(1): 9–19

    Article  CAS  Google Scholar 

  46. Boe K, Batstone D J, Steyer J P, Angelidaki I. State indicators for monitoring the anaerobic digestion process. Water Research, 2010, 44(20): 5973–5980

    Article  CAS  Google Scholar 

  47. Kougias P G, Treu L, Campanaro S, Zhu X, Angelidaki I. Dynamic functional characterization and phylogenetic changes due to Long Chain Fatty Acids pulses in biogas reactors. Scientific Reports, 2016, 6(1): 28810

    Article  CAS  Google Scholar 

  48. An D, Wang T, Zhou Q, Wang C, Yang Q, Xu B, Zhang Q. Effects of total solids content on performance of sludge mesophilic anaerobic digestion and dewaterability of digested sludge. Waste Management (New York, N.Y.), 2017, 62(1): 188–193

    Article  CAS  Google Scholar 

  49. Zhang W, Heaven S, Banks C J. Continuous operation of thermophilic food waste digestion with side-stream ammonia stripping. Bioresource Technology, 2017, 244(Pt 1): 611–620

    Article  CAS  Google Scholar 

  50. Moestedt J, Müller B, Westerholm M, Schnürer A. Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate. Microbial Biotechnology, 2016, 9(2): 180–194

    Article  CAS  Google Scholar 

  51. Chen Y, Cheng J J, Creamer K S. Inhibition of anaerobic digestion process: A review. Bioresource Technology, 2008, 99(10): 4044–4064

    Article  CAS  Google Scholar 

  52. Nielsen H B, Angelidaki I. Codigestion of manure and industrial organic waste at centralized biogas plants: Process imbalances and limitations. Water Science and Technology, 2008, 58(7): 1521–1528

    Article  CAS  Google Scholar 

  53. Lalman J, Bagley D M. Effects of C18 long chain fatty acids on glucose, butyrate and hydrogen degradation. Water Research, 2002, 36(13): 3307–3313

    Article  CAS  Google Scholar 

  54. Pereira M A, Pires O C, Mota M, Alves M M. Anaerobic biodegradation of oleic and palmitic acids: Evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge. Biotechnology and Bioengineering, 2005, 92(1): 15–23

    Article  CAS  Google Scholar 

  55. Ma J, Zhao Q B, Laurens L L M, Jarvis E E, Nagle N J, Chen S, Frear C S. Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnology for Biofuels, 2015, 8(1): 141

    Article  Google Scholar 

  56. Moeller L, Lehnig M, Schenk J, Zehnsdorf A. Foam formation in biogas plants caused by anaerobic digestion of sugar beet. Bioresource Technology, 2015, 178(1): 270–277

    Article  CAS  Google Scholar 

  57. Kougias P G, Boe K, O-Thong S, Kristensen L A, Angelidaki I. Anaerobic digestion foaming in full-scale biogas plants: A survey on causes and solutions. Water Science and Technology, 2014, 69 (4): 889–895

    Article  CAS  Google Scholar 

  58. Kougias P G, Tsapekos P, Boe K, Angelidaki I. Antifoaming effect of chemical compounds in manure biogas reactors. Water Research, 2013, 47(16): 6280–6288

    Article  CAS  Google Scholar 

  59. Angelidaki I, Karakashev D, Batstone D J, Plugge C M, Stams A J M. Biomethanation and its potential. Methods in Enzymology, 2011, 494(Chapter 16): 327–351

    Article  CAS  Google Scholar 

  60. Lansche J, Müller J. Life cycle assessment (LCA) of biogas versus dung combustion household cooking systems in developing countries—A case study in Ethiopia. Journal of Cleaner Production, 2017, 165(1): 828–835

    Article  Google Scholar 

  61. Bond T, Templeton M R. History and future of domestic biogas plants in the developing world. Energy for Sustainable Development, 2011, 15(4): 347–354

    Article  Google Scholar 

  62. Rajendran K, Aslanzadeh S, Taherzadeh M J. Household biogas digesters—A review. Energies, 2012, 5(8): 2911–2942

    Article  CAS  Google Scholar 

  63. Surendra K C, Takara D, Hashimoto A G, Khanal S K. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable & Sustainable Energy Reviews, 2014, 31(2): 846–859

    Article  Google Scholar 

  64. Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X. Selection of appropriate biogas upgrading technology—A review of biogas cleaning, upgrading and utilisation. Renewable & Sustainable Energy Reviews, 2015, 51(1): 521–532

    Article  CAS  Google Scholar 

  65. van Brakel J. The Ignis Fatuus of Biogas Small-Scale Anaerobic Digesters (“Biogas Plants”): A Critical Review of the Pre-1970 Literature. Delft: Delft University Press, 1980

    Google Scholar 

  66. Volta A. Lettere del Signor Don Allesandro Volta... sull’aria infiammabile nativa delle paludi. Marelli, 1977

    Google Scholar 

  67. Barker H. Bacterial Fermentations. New York: Wiley, 1956

    Book  Google Scholar 

  68. Omelianski W. Über Methanbildung in der Natur bei biologischen Prozessen. Zentralblatt fuèr Bakteriol. Parasitenkd. II, 1906

    Google Scholar 

  69. Söhngen N. Über bakterien, welche methan als kohlenstoffnahrung und energiequelle gebrauchen. Zentrabl Bakteriol Parasitenk Infekt, 1906

    Google Scholar 

  70. Buswell A, Boruff C. Mechanical equipment for continuous fermentation of fibrous materials. Industrial & Engineering Chemistry Research, 2002, 25(6): 147–149

    Google Scholar 

  71. Hobson P, Bousfield S, Summers R. Anaerobic digestion of organic matter: Critical Reviews in Environmental Science and Technology, 1974, 4(1–4): 131–191

    CAS  Google Scholar 

  72. Meynell P J. Methane: Planning a Digester. Berlin: Schocken Books, 1978

    Google Scholar 

  73. He P J. Anaerobic digestion: An intriguing long history in China. Waste Management, 2010, 30(4): 549–550

    Article  CAS  Google Scholar 

  74. Vergara-Fernández A, Vargas G, Alarcón N, Velasco A. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass and Bioenergy, 2008, 32(4): 338–344

    Article  Google Scholar 

  75. Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias P G. Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 2018, 36(2): 452–466

    Article  CAS  Google Scholar 

  76. Bauer F, Persson T, Hulteberg C, Tamm D. Biogas upgrading— Technology overview, comparison and perspectives for the future. Biofuels, Bioproducts & Biorefining, 2013, 7(5): 499–511

    Article  CAS  Google Scholar 

  77. Kougias P G, Treu L, Benavente D P, Boe K, Campanaro S, Angelidaki I. Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresource Technology, 2017, 225(1): 429–437

    Article  CAS  Google Scholar 

  78. Westerholm M, Müller B, Arthurson V, Schnürer A. Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration. Microbes and Environments, 2011, 26(4): 347–353

    Article  Google Scholar 

  79. Fotidis I A, Karakashev D, Kotsopoulos T A, Martzopoulos G G, Angelidaki I. Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition. FEMS Microbiology Ecology, 2013, 83(1): 38–48

    Article  CAS  Google Scholar 

  80. Palatsi J, Illa J, Prenafeta-Boldú F X, Laureni M, Fernandez B, Angelidaki I, Flotats X. Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling. Bioresource Technology, 2010, 101(7): 2243–2251

    Article  CAS  Google Scholar 

  81. Sousa D Z, Pereira M A, Smidt H, Stams A J M, Alves M M. Molecular assessment of complex microbial communities degrading long chain fatty acids in methanogenic bioreactors. FEMS Microbiology Ecology, 2007, 60(2): 252–265

    Article  CAS  Google Scholar 

  82. Boe K, Batstone D J, Angelidaki I. An innovative online VFA monitoring system for the anerobic process, based on headspace gas chromatography. Biotechnology and Bioengineering, 2007, 96(4): 712–721

    Article  CAS  Google Scholar 

  83. Batstone D J, Keller J, Angelidaki I, Kalyuzhnyi S V, Pavlostathis S G, Rozzi A, Sanders W T, Siegrist H, Vavilin V A. The IWA anaerobic digestion model No 1 (ADM1). Water Science and Technology, 2002, 45(10): 65–73

    CAS  Google Scholar 

  84. Vyrides I, Stuckey D C. Saline sewage treatment using a submerged anaerobic membrane reactor (SAMBR): Effects of activated carbon addition and biogas-sparging time. Water Research, 2009, 43(4): 933–942

    Article  CAS  Google Scholar 

  85. Bremges A, Maus I, Belmann P, Eikmeyer F, Winkler A, Albersmeier A, Púhler A, Schlúter A, Sczyrba A. Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant. GigaScience, 2015, 4(1): 33

    Article  Google Scholar 

  86. Schlüter A, Bekel T, Diaz N N, Dondrup M, Eichenlaub R, Gartemann K H, Krahn I, Krause L, Krömeke H, Kruse O, Mussgnug J H, Neuweger H, Niehaus K, Púhler A, Runte K J, Szczepanowski R, Tauch A, Tilker A, Viehöver P, Goesmann A. The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454- pyrosequencing technology. Journal of Biotechnology, 2008, 136 (1–2): 77–90

    Article  Google Scholar 

  87. Treu L, Kougias P G, Campanaro S, Bassani I, Angelidaki I. Deeper insight into the structure of the anaerobic digestion microbial community; the biogas microbiome database is expanded with 157 new genomes. Bioresource Technology, 2016, 216(1): 260–266

    Article  CAS  Google Scholar 

  88. Campanaro S, Treu L, Kougias P G, De Francisci D, Valle G, Angelidaki I. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnology for Biofuels, 2016, 9(1): 26

    Article  Google Scholar 

  89. Mosbæk F, Kjeldal H, Mulat D G, Albertsen M, Ward A J, Feilberg A, Nielsen J L. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics. ISME Journal, 2016, 10(10): 2405–2418

    Article  Google Scholar 

  90. Treu L, Campanaro S, Kougias P G, Zhu X, Angelidaki I. Untangling the effect of fatty acid addition at species level revealed different transcriptional responses of the biogas microbial community members. Environmental Science & Technology, 2016, 50(11): 6079–6090

    Article  CAS  Google Scholar 

  91. Ziels R M, Sousa D Z, Stensel H D, Beck D A C. DNA-SIP based genome-centric metagenomics identifies key long-chain fatty aciddegrading populations in anaerobic digesters with different feeding frequencies. ISME Journal, 2018, 12(1): 112–123

    Article  CAS  Google Scholar 

  92. European Biogas Association. 6th edition of the Statistical Report of the European Biogas Association. Brussels: European Biogas Association, 2016

Download references

Acknowledgements

This work was supported by the Innovation Fund Denmark under the project “SYMBIO–Integration of biomass and wind power for biogas enhancement and upgrading via hydrogen assisted anaerobic digestion” (Contract 12-132654).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis G. Kougias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kougias, P.G., Angelidaki, I. Biogas and its opportunities—A review. Front. Environ. Sci. Eng. 12, 14 (2018). https://doi.org/10.1007/s11783-018-1037-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-018-1037-8

Keywords

Navigation