Skip to main content
Log in

Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

This study evaluates the effectiveness of aerobic pretreatment of municipal solid waste (MSW) on reducing lag phase and accelerating biogas generation. Aerobic pretreatment degree (APD) was determined on the basis of reduction in volatile solids (VS) on a wet weight basis. In this study, intermittent aeration (IA) was applied to three reactors as a main aeration mode; since a single reactor was operated under continuous aeration mode. However, the purpose of the experiment was to reduce VS content of waste, irrespective of the comparison between aeration modes. Fresh MSW was first pretreated aerobically with different aeration rates (10, 40, 60 and 85 L/min/m3) for the period of 30–50 days, resulting in VS-loss equivalent to 20%, 27%, 38% and 53% on w/w basis for the wastes A1, A2, A3 and A4, respectively. The cumulative biogas production, calculated based on the modified Gompertz model were 384, 195, 353, 215, and 114 L/kg VS for the wastes A0, A1, A2, A3 and A4, respectively. Untreated waste (A0) showed a long lag phase; whereas the lag phases of pretreated MSW were reduced by more than 90%. Aerobically pretreated wastes reached stable methanogenic phase within 41 days compared to 418 days for untreated waste. The waste mass decreased by about 8% to 27% compared to untreated MSW, indicative that even more MSW could be placed in the same landfill. The study confirmed the effectiveness of aerobic pretreatment of MSW prior to landfilling on reducing lag phase and accelerating biogas generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cossu R, Lai T, Sandon A. Standardization of BOD5/COD ratio as a biological stability index for MSW. Waste Management (New York, N.Y.), 2012, 32(8): 1503–1508

    Article  CAS  Google Scholar 

  2. Di Maria F, Micale C. A holistic life cycle analysis of waste management scenarios at increasing source segregation intensity: the case of an Italian urban area. Waste Management (New York, N. Y.), 2014, 34(11): 2382–2392

    Article  Google Scholar 

  3. Salati S, Scaglia B, di Gregorio A, Carrera A, Adani F. Mechanical biological treatment of organic fraction of MSW affected dissolved organic matter evolution in simulated landfill. Bioresource Technology, 2013, 142(Supplement C): 115–120

    Article  CAS  Google Scholar 

  4. Scaglia B, Salati S, Di Gregorio A, Carrera A, Tambone F, Adani F. Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content. Bioresource Technology, 2013, 143(Supplement C): 131–138

    Article  CAS  Google Scholar 

  5. Gioannis G D, Muntoni A, Cappai G, Milia S. Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Management (New York, N.Y.), 2009, 29(3): 1026–1034

    Article  Google Scholar 

  6. Ritzkowski M, Stegmann R. Landfill aeration within the scope of post-closure care and its completion. Waste Management (New York, N.Y.), 2013, 33(10): 2074–2082

    Article  CAS  Google Scholar 

  7. Erses A S, Onay T T, Yenigun O. Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresource Technology, 2008, 99(13): 5418–5426

    Article  CAS  Google Scholar 

  8. Mahar R B, Liu J, Li H, Nie Y. Bio-pretreatment of municipal solid waste prior to landfilling and its kinetics. Biodegradation, 2009, 20 (3): 319–330

    Article  CAS  Google Scholar 

  9. Gerassimidou S, Evangelou A, Komilis D. Aerobic biological pretreatment of municipal solid waste with a high content of putrescibles: Effect on landfill emissions. Waste Management & Research, 2013, 31(8): 783–791

    Article  CAS  Google Scholar 

  10. Lornage R, Redon E, Lagier T, Hébé I, Carré J. Performance of a low cost MBT prior to landfilling: Study of the biological treatment of size reduced MSW without mechanical sorting. Waste Management (New York, N.Y.), 2007, 27(12): 1755–1764

    Article  CAS  Google Scholar 

  11. Broun R, Sattler M. A comparison of greenhouse gas emissions and potential electricity recovery from conventional and bioreactor landfills. Journal of Cleaner Production, 2016, 112(Part 4): 2664–2673

    Article  CAS  Google Scholar 

  12. Amini H R, Reinhart D R. Regional prediction of long-term landfill gas to energy potential. Waste Management (New York, N.Y.), 2011, 31(9): 2020–2026

    Article  Google Scholar 

  13. Li S, Yoo H K, Macauley M, Palmer K, Shih J S. Assessing the role of renewable energy policies in landfill gas to energy projects. Energy Economics, 2015, 49(Supplement C): 687–697

    Article  Google Scholar 

  14. Fazeli A, Bakhtvar F, Jahanshaloo L, Che Sidik N A, Bayat A E. Malaysia’s stand on municipal solid waste conversion to energy: A review. Renewable and Sustainable Energy Reviews, 2016, 58 (Supplement C): 1007–1016

    Article  Google Scholar 

  15. Cossu R. Technical evolution of landfilling. Waste Management (New York, N.Y.), 2010, 30(6): 947–948

    Article  Google Scholar 

  16. Nie Y. The technology and policy of urban solid waste disposal in China. International Journal of Environmental Studies, 2010, 67(2): 183–193

    Article  CAS  Google Scholar 

  17. Xu Q, Tian Y, Wang S, Ko J H. iA comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors. Waste Management (New York, N.Y.), 2015, 41 (Supplement C): 94–100

    Article  CAS  Google Scholar 

  18. Ni Z, Liu J, Girotto F, Cossu R, Qi G. Targeted modification of organic components of municipal solid waste by short-term preaeration and its enhancement on anaerobic degradation in simulated landfill bioreactors. Bioresource Technology, 2016, 216(Supplement C): 250–259

    Article  CAS  Google Scholar 

  19. Fang J J, Yang N, Cen D Y, Shao L M, He P J. Odor compounds from different sources of landfill: characterization and source identification. Waste Management (New York, N.Y.), 2012, 32(7): 1401–1410

    Article  CAS  Google Scholar 

  20. Zhou C, Gong Z, Hu J, Cao A, Liang H. A cost-benefit analysis of landfill mining and material recycling in China. Waste Management (New York, N.Y.), 2015, 35(Supplement C): 191–198

    Google Scholar 

  21. Ying D, Chuanyu C, Bin H, Yueen X, Xuejuan Z, Yingxu C, Weixiang W. Characterization and control of odorous gases at a landfill site: A case study in Hangzhou, China. Waste Management (New York, N.Y.), 2012, 32(2): 317–326

    Article  Google Scholar 

  22. National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press, 2016 (in Chinese)

    Google Scholar 

  23. Cai B, Wang J, Long Y, Li W, Liu J, Ni Z, Bo X, Li D, Wang J, Chen X, Gao Q, Zhang L. Evaluating the impact of odors from the 1955 landfills in China using a bottom-up approach. Journal of Environmental Management, 2015, 164(Supplement C): 206–214

    Article  CAS  Google Scholar 

  24. De Clercq D, Wen Z, Fan F, Caicedo L. Biomethane production potential from restaurant food waste in megacities and project levelbottlenecks: A case study in Beijing. Renewable and Sustainable Energy Reviews, 2016, 59(Supplement C): 1676–1685

    Article  Google Scholar 

  25. Zhang H, Wen Z, Chen Y. Environment and economic feasibility of municipal solid waste central sorting strategy: a case study in Beijing. Frontiers of Environmental Science & Engineering, 2016, 10(4): 10

    Article  Google Scholar 

  26. Sun Y, Yue D, Li R, Yang T, Liu S. Assessing the performance of gas collection systems in select Chinese landfills according to the LandGEM model: Drawbacks and potential direction. Environmental Technology (United Kingdom), 2015, 36(23): 2912–2918

    CAS  Google Scholar 

  27. Zhang Y, Yue D, Liu J, Lu P, Wang Y, Liu J, Nie Y. Release of nonmethane organic compounds during simulated landfilling of aerobically pretreated municipal solid waste. Journal of Environmental Management, 2012, 101(Supplement C): 54–58

    Article  CAS  Google Scholar 

  28. Zhang Y, Yue D, Nie Y. Greenhouse gas emissions from two-stage landfilling of municipal solid waste. Atmospheric Environment, 2012, 55(Supplement C): 139–143

    Article  CAS  Google Scholar 

  29. Zhao Y, Christensen T H, Lu W, Wu H, Wang H. Environmental impact assessment of solid waste management in Beijing City, China. Waste Management (New York, N.Y.), 2011, 31(4): 793–799

    Article  Google Scholar 

  30. Wang H, Nie Y. Municipal solid waste characteristics and management in China. Journal of the Air & Waste Management Association, 2001, 51(2): 250–263

    Article  CAS  Google Scholar 

  31. Shao L M, He P J, Zhang H, Yu X H, Li G J. Methanogenesis acceleration of fresh landfilled waste by micro-aeration. Journal of Environmental Sciences-China, 2005, 17(3): 371–374

    CAS  Google Scholar 

  32. Xu Q, Jin X, Ma Z, Tao H, Ko J H. Methane production in simulated hybrid bioreactor landfill. Bioresource Technology, 2014, 168 (Supplement C): 92–96

    Article  CAS  Google Scholar 

  33. Yue D, Han B, Sun Y, Yang T. Sulfide emissions from different areas of a municipal solid waste landfill in China. Waste Management (New York, N.Y.), 2014, 34(6): 1041–1044

    Article  CAS  Google Scholar 

  34. Wang L, Pei T, Huang C, Yuan H. Management of municipal solid waste in the Three Gorges region. Waste Management (New York, N.Y.), 2009, 29(7): 2203–2208

    Article  CAS  Google Scholar 

  35. Mahar R B, Liu J, Yue D, Nie Y. Landfilling of pretreated municipal solid waste by natural convection of air and its effects. Journal of Environmental Science and Health, Part A, 2007, 42(3): 351–359

    Article  CAS  Google Scholar 

  36. Mahar R B, Liu J, Yue D, Nie Y. Biodegradation of organic matters from mixed unshredded municipal solid waste through air convection before landfilling. Journal of the Air & Waste Management Association, 2007, 57(1):39–46

    Article  CAS  Google Scholar 

  37. Norbu T, Visvanathan C, Basnayake B. Pretreatment of municipal solid waste prior to landfilling. Waste Management (New York, N. Y.), 2005, 25(10): 997–1003

    Article  CAS  Google Scholar 

  38. Dennehy C, Lawlor P G, Jiang Y, Gardiner G E, Xie S, Nghiem L D, Zhan X. Greenhouse gas emissions from different pig manure management techniques: a critical analysis. Frontiers of Environmental Science & Engineering, 2017, 11(3): 11

    Article  Google Scholar 

  39. van Praagh M, Heerenklage J, Smidt E, Modin H, Stegmann R, Persson K M. Potential emissions from two mechanicallybiologically pretreated (MBT) wastes. Waste Management (New York, N.Y.), 2009, 29(2): 859–868

    Article  Google Scholar 

  40. Zach A, Binner E, Latif M. Improvement of municipal solid waste quality for landfilling by means of mechanical-biological pretreatment. Waste Management & Research, 2000, 18(1): 25–32

    CAS  Google Scholar 

  41. Peces M, Astals S, Mata-Alvarez J. Assessing total and volatile solids in municipal solid waste samples. Environmental Technology, 2014, 35(24): 3041–3046

    Article  CAS  Google Scholar 

  42. Mahar R B, Sahito A R, Yue D, Khan K. Modeling and simulation of landfill gas production from pretreated MSW landfill simulator. Frontiers of Environmental Science & Engineering, 2016, 10(1): 159–167

    Article  CAS  Google Scholar 

  43. Mali Sandip T, Khare Kanchan C, Biradar Ashok H. Enhancement of methane production and bio-stabilisation of municipal solid waste in anaerobic bioreactor landfill. Bioresource Technology, 2012, 110 (Supplement C): 10–17

    Article  CAS  Google Scholar 

  44. Cossu R, Morello L, Raga R, Cerminara G. Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill. Waste Management (New York, N.Y.), 2016, 55(Supplement C): 83–92

    CAS  Google Scholar 

  45. Nikolaou A, Giannis A, Gidarakos E. Comparative studies of aerobic and anaerobic treatment of MSW organic fraction in landfill bioreactors. Environmental Technology, 2010, 31(12): 1381–1389

    Article  CAS  Google Scholar 

  46. Di Maria F, Sordi A, Micale C. Experimental and life cycle assessment analysis of gas emission from mechanically-biologically pretreated waste in a landfill with energy recovery. Waste Management (New York, N.Y.), 2013, 33(11): 2557–2567

    Article  Google Scholar 

  47. Luo J, Qian G, Liu J, Xu Z P. Anaerobic methanogenesis of fresh leachate from municipal solid waste: A brief review on current progress. Renewable & Sustainable Energy Reviews, 2015, 49 (Supplement C): 21–28

    Article  CAS  Google Scholar 

  48. Siddiqui A A, Richards D J, Powrie W. Biodegradation and flushing of MBT wastes. Waste Management (New York, N.Y.), 2013, 33 (11): 2257–2266

    CAS  Google Scholar 

  49. Ağdağ O N, Sponza D T. Effect of aeration on the performance of a simulated landfilling reactor stabilizing municipal solid wastes. Journal of Environmental Science and Health, Part A, 2004, 39(11–12): 2955–2972

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from Special Fund of Environmental Protection Research for Public Welfare of China (No. 201509055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongbei Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Zhang, J., Raga, R. et al. Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling. Front. Environ. Sci. Eng. 12, 5 (2018). https://doi.org/10.1007/s11783-018-1031-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-018-1031-1

Keywords

Navigation