Skip to main content
Log in

A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Currently, increasing amounts of end-of-life (EoL) electronic products are being generated due to their reduced life spans and the unavailability of suitable recycling technologies. In particular, waste printed circuit boards (PCBs) have become of global concern with regard to environmental issues because of their high metal and toxic material contents, which are pollutants. There are many environmental threats owed to the disposal of electronic waste; off-gasses, such as dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons, can be generated during thermal treatments, which can cause serious health problems if effective off-gas cleaning systems are not developed and improved. Moreover, heavy metals will dissolve, and release into the ground water from the landfill sites. Such waste PCBs contain precious metals which are of monetary value. Therefore, it is beneficial to recover the metal content and protect the environment from pollution. Hydrometallurgy is a successful technique used worldwide for the recovery of precious metals (especially gold and silver) from ores, concentrates, and waste materials. It is generally preferred over other methods because it can offer high recovery rates at a relatively low cost. This article reviews the recent trends and developments with regard to the recycling of precious metals from waste PCBs through hydrometallurgical techniques, such as leaching and recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akcil A, Erust C, Gahan C S, Ozgun M, Sahin M, Tuncuk A. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants—A review. Waste Management, 2015, 45: 258–271

    Article  CAS  Google Scholar 

  2. Baldé C P, Wang F, Kuehr R, Huisman J. The Global E-waste Monitor 2014: Quantities, Flows and Resources. Tokyo & Bonn: United Nations University, 2015

    Google Scholar 

  3. Guo J, Guo J, Xu Z. Recycling of non-metallic fractions from waste printed circuit boards: A review. Journal of Hazardous Materials, 2009, 168(2–3): 567–590

    Article  CAS  Google Scholar 

  4. Hischier R, Wäger P, Gauglhofer J. Does WEEE recycling make sense from an environmental perspective? The environmental impacts of the Swiss take-back and recycling systems for waste electrical and electronic equipment (WEEE). Environment Impact Assessment, 2005, 25(5): 525–539

    Article  Google Scholar 

  5. Kahhat R, Kim J, Xu M, Allenby B, Williams E, Zhang P. Exploring e-waste Management systems in the United States. Resources, Conservation and Recycling, 2008, 52(7): 955–964

    Article  Google Scholar 

  6. Marques A C, Cabrera Marrero J M, de Fraga Malfatti C. A review of the recycling of non-metallic fractions of printed circuit boards. SpringerPlus, 2013, 2(1): 521

    Article  Google Scholar 

  7. Kowalska E, Radomska J, Konarski P, Diduszko R, Oszczudłowski J, Opalińska T, Więch M, Duszyc Z. Thermogravimetric investigation of wastes from electrical and electronic equipment (WEEE). Journal of Thermal Analysis and Calorimetry, 2006, 86(1): 137–140

    Article  CAS  Google Scholar 

  8. Nnorom I C, Osibanjo O. Overview of electronic waste (e-waste) Management practices and legislations, and their poor applications in the developing countries. Resources, Conservation and Recycling, 2008, 52(6): 843–858

    Article  Google Scholar 

  9. Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Böni H. Global persp ectives on e-waste. Environmental Impact Assessment Review, 2005, 25(5): 436–458

    Article  Google Scholar 

  10. Sinha-Khetriwal D, Kraeuchi P, Schwaninger M. A comparison of electronic waste recycling in Switzerland and in India. Environmental Impact Assessment Review, 2005, 25(5): 492–504

    Article  Google Scholar 

  11. Vats M C, Singh S K. Assessment of gold and silver in assorted mobile phone printed circuit boards (PCBs): Original article. Waste Management, 2015, 45: 280–288

    Article  CAS  Google Scholar 

  12. Ghosh B, Ghosh M K, Parhi P, Mukherjee P S, Mishra B K. Waste printed circuit boards recycling: An extensive assessment of current status. Journal of Cleaner Production, 2015, 94: 5–19

    Article  CAS  Google Scholar 

  13. Yang T, Xu Z, Wen J K, Yang L M. Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy, 2009, 97(1–2): 29–32

    Article  CAS  Google Scholar 

  14. Park Y J, Fray D J. Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials, 2009, 164(2–3): 1152–1158

    Article  CAS  Google Scholar 

  15. Yamane L H, de Moraes V T, Espinosa D C R, Tenório J A S. Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers. Waste Management, 2011, 31 (12): 2553–2558

    Article  CAS  Google Scholar 

  16. Li J Y, Xu X L, Liu WQ. Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. Waste Management, 2012, 32(6): 1209–1212

    Article  CAS  Google Scholar 

  17. Cui J, Zhang L. Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials, 2008, 158(2–3): 228–256

    Article  CAS  Google Scholar 

  18. Das A, Vidyadhar A, Mehrotra S P. A novel flowsheet for the recovery of metal values from waste printed circuit boards. Resources, Conservation and Recycling, 2009, 53(8): 464–469

    Article  Google Scholar 

  19. Wang X, Gaustad G. Prioritizing material recovery for end-of-life printed circuit boards. Waste Management, 2012, 32(10): 1903–1913

    Article  Google Scholar 

  20. Liu P Y, Zhao Y X, Zhu Y Y, Qin Z F, Ruan X L, Zhang Y C, Chen B J, Li Y, Yan S S, Qin X F, Fu S, Xu X B. Determination of polybrominated diphenyl ethers in human semen. Environment International, 2012, 42(1): 132–137

    Article  CAS  Google Scholar 

  21. Luo C, Liu C, Wang Y, Liu X, Li F, Zhang G, Li X. Heavy metal contamination in soils and vegetables near an e-waste processing site, South China. Journal of Hazardous Materials, 2011, 186(1): 481–490

    Article  CAS  Google Scholar 

  22. Noon M S, Lee S J, Cooper J S. A life cycle assessment of end-oflife computer monitor management in the Seattle metropolitan region. Resources, Conservation and Recycling, 2011, 57(4): 22–29

    Article  Google Scholar 

  23. Tsydenova O, Bengtsson M. Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Management, 2011, 31(1): 45–58

    Article  CAS  Google Scholar 

  24. Bi X H, Simoneit B R T, Wang Z Z, Wang X M, Sheng G Y, Fu J M. The major components of particles emitted during recycling of waste printed circuit boards in a typical e-waste workshop of South China. Atmospheric Environment, 2010, 44(35): 4440–4445

    Article  CAS  Google Scholar 

  25. Owens C V Jr, Lambright C, Bobseine K, Ryan B, Gray L E Jr, Gullett B K, Wilson V S. Identification of estrogenic compounds emitted from the combustion of computer printed circuit boards in electronic waste. Environmental Science & Technology, 2007, 41 (24): 8506–8511

    Article  CAS  Google Scholar 

  26. Duan H, Li J, Liu Y, Yamazaki N, Jiang W. Characterization and inventory of PCDD/Fs and PBDD/Fs emissions from the incineration of waste printed circuit board. Environmental Science & Technology, 2011, 45(15): 6322–6328

    Article  CAS  Google Scholar 

  27. Duan H, Li J, Liu Y, Yamazaki N, Jiang W. Characterizing the emission of chlorinated/brominated dibenzo-p-dioxins and furans from low-temperature thermal processing of waste printed circuit board. Environmental Pollution, 2012, 161: 185–191

    Article  CAS  Google Scholar 

  28. Hall WJ, Williams P T. Pyrolysis of brominated feedstock plastic in a fluidised bed reactor. Journal of Analytical and Applied Pyrolysis, 2006, 77(1): 75–82

    Article  CAS  Google Scholar 

  29. Wen S, Yang F, Li J G, Gong Y, Zhang X L, Hui Y, Wu Y N, Zhao Y F, Xu Y. Polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) monitored by tree bark in an E-waste recycling area. Chemosphere, 2009, 74(7): 981–987

    Article  CAS  Google Scholar 

  30. Li J H, Duan H B, Yu K L, Liu L L, Wang S T. Characteristic of lowtemperature pyrolysis of printed circuit boards subjected to various atmosphere. Resources, Conservation and Recycling, 2010, 54(11): 810–815

    Article  Google Scholar 

  31. Long Y Y, Feng Y J, Cai S S, Ding WX, Shen D S. Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling. Journal of Hazardous Materials, 2013, 261(20): 427–434

    Article  CAS  Google Scholar 

  32. Huang K, Guo J, Xu Z. Recycling of waste printed circuit boards: A review of current technologies and treatment status in China. Journal of Hazardous Materials, 2009, 164(2–3): 399–408

    Article  CAS  Google Scholar 

  33. Ni K, Lu Y, Wang T, Kannan K, Gosens J, Xu L, Li Q, Wang L, Liu S. A review of human exposure to polybrominated diphenyl ethers (PBDEs) in China. International Journal of Hygiene and Environmental Health, 2013, 216(6): 607–623

    Article  CAS  Google Scholar 

  34. Tue N M, Takahashi S, Subramanian A, Sakai S, Tanabe S. Environmental contamination and human exposure to dioxin-related compounds in e-waste recycling sites of developing countries. Environmental Science. Processes & Impacts, 2013, 15(7): 1326–1331

    Article  Google Scholar 

  35. Hilson G, Monhemius A J. Alternatives to cyanide in the gold mining industry: what prospects for the future? Journal of Cleaner Production, 2006, 14(12–13): 1158–1167

    Article  Google Scholar 

  36. Lu Y, Xu Z M. Precious metals recovery from waste printed circuit boards: A review for current status and perspective. Resources, Conservation and Recycling, 2016, 113: 28–39

    Article  Google Scholar 

  37. Parga J R, Valenzuela J L, Francisco C T. Pressure cyanide leaching for precious metals recovery. JOM, 2007, 59(10): 43–47

    Article  CAS  Google Scholar 

  38. Hill R F, Potter N M. Dissolution of palladium and platinum from automotive catalysts. IEEE Transactions on Nuclear Science, 1979, 26(5): 4704–4706

    Article  Google Scholar 

  39. Quinet P, Proost J, Van Lierde A. Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Minerals & Metallurgical Processing, 2005, 22(1): 17–22

    CAS  Google Scholar 

  40. Petter P M, Veit H M, Bernardes A M. Evaluation of gold and silver leaching from printed circuit board of cellphones. Waste Management, 2014, 34(2): 475–482

    Article  CAS  Google Scholar 

  41. Behnamfard A, Salarirad M M, Veglio F. Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Management, 2013, 33(11): 2354–2363

    Article  CAS  Google Scholar 

  42. Kim E Y, Kim MS, Lee J C, Pandey B D. Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. Journal of Hazardous Materials, 2011, 198: 206–215

    Article  CAS  Google Scholar 

  43. Moses L B, Petersen F W. Flotation as a separation technique in the coal gold agglomeration process. Minerals Engineering, 2000, 13 (3): 255–264

    Article  CAS  Google Scholar 

  44. Wang H X, Sun C B, Li S Y, Fu P F, Song Y G, Li L, Xie W Q. Study on gold concentrate leaching by iodine-iodide. International Journal of Minerals Metallurgy and Materials, 2013, 20(4): 323–328

    Article  Google Scholar 

  45. Xu Q, Chen D H, Chen L, Huang M H. Iodine leaching process for recovery of gold from waste PCB. Chinese Journal of Environmental Engineering, 2009, 3(5): 911–914 (in Chinese)

    CAS  Google Scholar 

  46. Xu Q, Chen D H, Chen L, Huang M H. Gold leaching from waste printed circuit board by iodine process. Nonferrous Metals, 2010, 62 (3): 88–90 (in Chinese)

    CAS  Google Scholar 

  47. Baghalha M. Leaching of an oxide gold ore with chloride/hypochlorite solutions. International Journal of Mineral Processing, 2007, 82(4): 178–186

    Article  CAS  Google Scholar 

  48. Liu Y, Ruan J L, Guo Y W, Qiao Q, Liu J Y, Zhang J Q. Comparison study of gold leaching methods of waste printed circuit boards (PCBs) from mobile phone. China Resources Comprehensive Utilization, 2013, 31(1): 38–41 (in Chinese)

    Google Scholar 

  49. Zhang Y H, Liu S L, Xie H H, Zeng X L, Li J H. Current status on leaching precious metals from waste printed circuit boards. Procedia Environmental Sciences, 2012, 16: 560–568

    Article  Google Scholar 

  50. Gönen N. Leaching of finely disseminated gold ore with cyanide and thiourea solutions. Hydrometallurgy, 2003, 69(1–3): 169–176

    Article  Google Scholar 

  51. Schulze R G. New aspects in thiourea leaching of precious metals. JOM, 1984, 36(6): 62–65

    Article  CAS  Google Scholar 

  52. Birloaga I, Vegliò F. Study of multi-step hydrometallurgical methods to extract the valuable content of gold, silver and copper from waste printed circuit boards. Journal of Environmental Chemical Engineering, 2016, 4(1): 20–29

    Article  CAS  Google Scholar 

  53. Senanayake G. Analysis of React ion kinetics, speciation and mechanism of gold leaching and thiosulfate oxidation by ammoniacal copper(II) solutions. Hydrometallurgy, 2004, 75(1–4): 55–75

    Article  CAS  Google Scholar 

  54. Aylmore M G, Muir D M. Thiosulfate leaching of gold––A review. Minerals Engineering, 2001, 14(2): 135–174

    Article  CAS  Google Scholar 

  55. Ha V H, Lee J C, Huynh T H, Jeong J, Pandey B D. Optimizing the thiosulfate leaching of gold from printed circuit boards of discarded mobile phone. Hydrometallurgy, 2014, 149: 118–126

    Article  CAS  Google Scholar 

  56. Ficeriová J, Baláž P, Gock E. Leaching of gold, silver and accompanying metals from circuit boards (PCBs) waste. Acta Montanistica Slovaca, 2011, 16(2): 128

    Google Scholar 

  57. Sheng P P, Etsell T H. Recovery of gold from computer circuit board scrap using aqua regia. Waste Management & Research, 2007, 25(4): 380–383

    Article  CAS  Google Scholar 

  58. Dong T G, Hua Y X, Zhang Q B, Zhou D G. Leaching of chalcopyrite with Brønsted acidic ionic liquid. Hydrometallurgy, 2009, 99(1–2): 33–38

    Article  CAS  Google Scholar 

  59. Fraga-Dubreuil J, Bazureau J P. Grafted ionic liquid-phasesupported synthesis of small organic molecules. Tetrahedron Letters, 2001, 42(35): 6097–6100

    Article  CAS  Google Scholar 

  60. Berenblyum A S, Katsman E A, Karasev Y Z. The nature of catalytic activity and deactivation of chloroaluminate ionic liquid. Applied Catalysis A, General, 2006, 315(1): 128–134

    Article  CAS  Google Scholar 

  61. Kumari A, Jha M K, Singh R P. Recovery of metals from pyrolysed PCBs by hydro-metallurgical techniques. Hydrometallurgy, 2016, 165(Part 1): 97–105

    Article  CAS  Google Scholar 

  62. Ma B M, Zhang M, He C J, Sun J F. New binary ionic liquid system for the preparation of chitosan/cellulose composite fibers. Carbohydrate Polymers, 2012, 88(1): 347–351

    Article  CAS  Google Scholar 

  63. Huang J, Chen M, Chen H, Chen S, Sun Q. Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid. Waste Management, 2014, 34(2): 483–488

    Article  CAS  Google Scholar 

  64. Chen M, Huang J, Ogunseitan O A, Zhu N, Wang Y M. Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids. Waste Management, 2015, 41: 142–147

    Article  CAS  Google Scholar 

  65. Chen MJ, Zhang S, Huang J X, Chen H Y. Lead during the leaching process of copper from waste printed circuit boards by five typical ionic liquid acids. Journal of Cleaner Production, 2015, 95: 142–147

    Article  Google Scholar 

  66. Koyama K, Tanaka M, Lee J C. Copper leaching behavior from waste printed circuit board in ammoniacal alkaline solution. Materials Transactions, 2006, 47(7): 1788–1792

    Article  CAS  Google Scholar 

  67. Yazici E Y, Deveci H. Extraction of metals from waste printed circuit boards (WPCBs) in H2SO4-CuSO4-NaCl solutions. Hydrometallurgy, 2013, 139(3): 30–38

    Article  CAS  Google Scholar 

  68. Birloaga I, De Michelis I, Ferella F, Buzatu M, Vegliò F. Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery. Waste Management, 2013, 33(4): 935–941

    Article  CAS  Google Scholar 

  69. Zhang Z, Zhang F S. Selective recovery of palladium from waste printed circuit boards by a novel non-acid process. Journal of Hazardous Materials, 2014, 279(1): 46–51

    CAS  Google Scholar 

  70. Brierley J A, Brierley C L. Present and future commercial applications of biohydrometallurgy. Hydrometallurgy, 2001, 59(2–3): 233–239

    Article  CAS  Google Scholar 

  71. Wang J, Bai J, Xu J, Liang B. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Journal of Hazardous Materials, 2009, 172(2–3): 1100–1105

    Article  CAS  Google Scholar 

  72. Liang G, Tang J, Liu W, Zhou Q. Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). Journal of Hazardous Materials, 2013, 250–251(2): 238–245

    Article  Google Scholar 

  73. Arshadi M, Mousavi S M, Rasoulnia P. Enhancement of simultaneous gold and copper recovery from discarded mobile phone PCBs using Bacillus megaterium: RSM based optimization of effective factors and evaluation of their interactions. Waste Management, 2016, 57: 158–167

    Article  CAS  Google Scholar 

  74. Choi M S, Cho K S, Kim D S, Kim D J. Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans. Part A, 2004, 39(11–12): 2973–2982

    Google Scholar 

  75. Brandl H, Lehmann S, Faramarzi M A, Martinelli D. Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy, 2008, 94(1): 14–17

    Article  CAS  Google Scholar 

  76. Xiang Y, Wu P, Zhu N, Zhang T, Liu W, Wu J, Li P. Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. Journal of Hazardous Materials, 2010, 184(1–3): 812–818

    Article  CAS  Google Scholar 

  77. Ilyas S, Ruan C, Bhatti H N, Ghauri M A, Anwar M A. Column bioleaching of metals from electronic scrap. Hydrometallurgy, 2010, 101(3): 135–140

    Article  CAS  Google Scholar 

  78. Chi T D, Lee J C, Pandey B D, Yoo K, Jeong J. Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium. Minerals Engineering, 2011, 24(11): 1219–1222

    Article  CAS  Google Scholar 

  79. Zhu N, Xiang Y, Zhang T, Wu P, Dang Z, Li P, Wu J. Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria. Journal of Hazardous Materials, 2011, 192(2): 614–619

    Article  CAS  Google Scholar 

  80. Bas A D, Deveci H, Yazici E Y. Bioleaching of copper from low grade scrap TV circuit boards using mesophilic bacteria. Hydrometallurgy, 2013, 138(6): 65–70

    Article  CAS  Google Scholar 

  81. Hong Y, Valix M. Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. Journal of Cleaner Production, 2014, 65 (65): 465–472

    Article  CAS  Google Scholar 

  82. Ruan J, Zhu X, Qian Y, Hu J. A new strain for recovering precious metals from waste printed circuit boards. Waste Management, 2014, 34(5): 901–907

    Article  CAS  Google Scholar 

  83. Işıldar A, van de Vossenberg J, Rene E R, van Hullebusch E D, Lens P N L. Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Management, 2016, 57: 149–157

    Article  Google Scholar 

  84. Sanyal S, Ke Q D, Zhang Y, Ngo T, Carrell J, Zhang H C, Dai L L. Understanding and optimizing delamination/recycling of printed circuit boards using a supercritical carbon dioxide process. Journal of Cleaner Production, 2013, 41(41): 174–178

    Article  CAS  Google Scholar 

  85. Calgaro C O, Schlemmer D F, da Silva M D C R, Maziero E V, Tanabe E H, Bertuol D A. Fast copper extraction from printed circuit boards using supercritical carbon dioxide. Waste Management, 2015, 45: 289–297

    Article  CAS  Google Scholar 

  86. Xiu F R, Zhang F S. Materials recovery from waste printed circuit boards by supercritical methanol. Journal of Hazardous Materials, 2010, 178(1-3): 628–634

    Article  CAS  Google Scholar 

  87. Xiu F R, Qi Y, Zhang F S. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process. Waste Management, 2013, 33(5): 1251–1257

    Article  CAS  Google Scholar 

  88. Xiu F R, Qi Y, Zhang F S. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment. Waste Management, 2015, 41: 134–141

    Article  CAS  Google Scholar 

  89. Fleming C A, McMullen J, Thomas K G, Wells J A. Recent advances in the development of an alternative to the cyanidation process: Thiosulfate leaching and resin in pulp. Minerals & Metallurgical Processing, 2003, 20(1): 1–9

    CAS  Google Scholar 

  90. Zhang H G, Ritchie I M, La Brooy S R. The adsorption of gold thiourea complex onto activated carbon. Hydrometallurgy, 2004, 72 (3–4): 291–301

    Article  CAS  Google Scholar 

  91. Jeffrey M I, Brunt S D. The quantification of thiosulfate and polythionates in gold leach solutions and on anion exchange resins. Hydrometallurgy, 2007, 89(1): 52–60

    Article  CAS  Google Scholar 

  92. Grosse A C, Dicinoski G W, Shaw M J, Haddad P R. Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review). Hydrometallurgy, 2003, 69(1): 1–21

    Article  CAS  Google Scholar 

  93. Nicol M J, O’Malley G. Recovering gold from thiosulfate leach pulps via ion exchange. JOM, 2002, 54(10): 44–46

    Article  CAS  Google Scholar 

  94. Zhang H G, Dreisinger D B. The recovery of gold from ammoniacal thiosulfate solutions containing copper using ion exchange resin column. Hydrometallurgy, 2004, 72(3): 225–234

    Article  CAS  Google Scholar 

  95. Thomas K, Fleming C, Marchbank A, Dreisinger D. Gold recovery from refractory carbonaceous ores by pressure oxidation, thiosulfate leaching and resin-in-pulp adsorption. US Patent, 5785736, 1998–7-28

    Google Scholar 

  96. Fogarasi S, Imre-Lucaci F, Egedy A, Imre-Lucaci Á, Ilea P. Ecofriendly copper recovery process from waste printed circuit boards using Fe3+/Fe2+ redox system. Waste Management, 2015, 40: 136–143

    Article  CAS  Google Scholar 

  97. Masavetas I, Moutsatsou A, Nikolaou E, Spanou S, Zoikis-Karathanasis A, Pavlatou E A, Spyrellis N. Production of copper powder from printed circuit boards by electrodeposition. Global NEST Journal, 2009, 11(2): 241–247

    Google Scholar 

  98. Lekka M, Masavetas I, Benedetti A V, Moutsatsou A, Fedrizzi L. Gold recovery from waste electrical and electronic equipment by electrodeposition: A feasibility study. Hydrometalluryg, 2015, 157: 97–106

    Article  CAS  Google Scholar 

  99. Lister T E, Wang P, Anderko A. Recovery of critical and value metals from mobile electronics enabled by electrochemical processing. Hydrometallurgy, 2014, 149: 228–237

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported, in part, by the National Natural Science Foundation of China (No. 21407105), Shanghai Municipal Natural Science Foundation (No. 14ZR1416700), SPU Graduate project fund (A01GY17F022), SPU Key Disciplines Subject (XXKZD1602) and Shanghai Cooperative Centre for WEEE Recycling (ZF1224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyi Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Yuan, W., Li, J. et al. A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy. Front. Environ. Sci. Eng. 11, 8 (2017). https://doi.org/10.1007/s11783-017-0995-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0995-6

Keywords

Navigation