Skip to main content
Log in

Catalytic reduction for water treatment

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Treating water contaminants via heterogeneously catalyzed reduction reaction is a subject of growing interest due to its good activity and superior selectivity compared to conventional technology, yielding products that are non-toxic or substantially less toxic. This article reviews the application of catalytic reduction as a progressive approach to treat different types of contaminants in water, which covers hydrodehalogenation for wastewater treatment and hydrogenation of nitrate/nitrite for groundwater remediation. For hydrodehalogenation, an overview of the existing treatment technologies is provided with an assessment of the advantages of catalytic reduction over the conventional methodologies. Catalyst design for feasible catalytic reactions is considered with a critical analysis of the pertinent literature. For hydrogenation, hydrogenation of nitrate/nitrite contaminants in water is mainly focused. Several important nitrate reduction catalysts are discussed relating to their preparation method and catalytic performance. In addition, novel approach of catalytic reduction using in situ synthesized H2 evolved from water splitting reaction is illustrated. Finally, the challenges and perspective for the extensive application of catalytic reduction technology in water treatment are discussed. This review provides key information to our community to apply catalytic reduction approach for water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu H, Wang J, Wang T, Wang N, Bao Y, Hao H. Crystallization techniques in wastewater treatment: an overview of applications. Chemosphere, 2017, 173: 474–484

    Article  CAS  Google Scholar 

  2. Hu M, Zhong S. The structure of TiO2/hydroxyapatite and its photocatalytic performance in degradation of aldehyde. Chinese Journal of Catalysis, 2006, 27(12): 1144–1148 (in Chinese)

    CAS  Google Scholar 

  3. Song X, Liu R, Chen L, Kawagishi T. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics. Frontiers of Environmental Science & Engineering, 2017, 11(2): 11

    Article  Google Scholar 

  4. Zhang H, Li W, Jin Y, Sheng W, Hu M, Wang X, Zhang J. Ru-Co (III)-Cu(II)/SAC catalyst for acetylene hydrochlorination. Applied Catalysis B: Environmental, 2016, 189: 56–64

    Article  CAS  Google Scholar 

  5. Xu Z, Liu H, Niu J, Zhou Y, Wang C, Wang Y. Hydroxyl multiwalled carbon nanotube-modified nanocrystalline PbO2 anode for removal of pyridine from wastewater. Journal of Hazardous Materials, 2017, 327: 144–152

    Article  CAS  Google Scholar 

  6. Niu J, Yin L, Dai Y, Bao Y, Crittenden J C. Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water. Applied Catalysis A, General, 2016, 521: 90–95

    Article  CAS  Google Scholar 

  7. Arena F, Di Chio R, Gumina B, Spadaro L, Trunfio G. Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorganica Chimica Acta, 2015, 431: 101–109

    Article  CAS  Google Scholar 

  8. Wang Y, Wang K, Wang X. Preparation of Ag3PO4/Ni3(PO4)2 hetero-composites by cation exchange reaction and its enhancing photocatalytic performance. Journal of Colloid and Interface Science, 2016, 466: 178–185

    Article  CAS  Google Scholar 

  9. Li X, Shi H, Li K, Zhang L. Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse. Frontiers of Environmental Science & Engineering, 2015, 9 (6): 1076–1083

    Article  CAS  Google Scholar 

  10. Chaplin B P, Reinhard M, Schneider W F, Schüth C, Shapley J R, Strathmann T J, Werth C J. Critical review of Pd-based catalytic treatment of priority contaminants in water. Environmental Science & Technology, 2012, 46(7): 3655–3670

    Article  CAS  Google Scholar 

  11. Zhang Y, He Z, Wang H, Qi L, Liu G, Zhang X. Applications of hollow nanomaterials in environmental remediation and monitoring: A review. Frontiers of Environmental Science & Engineering, 2015, 9(5): 770–783

    Article  CAS  Google Scholar 

  12. Wang J, Bai Z. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chemical Engineering Journal, 2017, 312: 79–98

    Article  CAS  Google Scholar 

  13. Wang J, Wang G, Yang C, Yang S, Huang Q. Catalytic ozonation of organic compounds in water over the catalyst of RuO2/ZrO2-CeO2. Frontiers of Environmental Science & Engineering, 2015, 9(4): 615–624

    Article  CAS  Google Scholar 

  14. Khamparia S, Jaspal D K. Adsorption in combination with ozonation for the treatment of textile waste water: a critical review. Frontiers of Environmental Science & Engineering, 2017, 11(1): 8

    Article  Google Scholar 

  15. Chen Y, Xiao F, Liu Y, Wang D, Yang M, Bai H, Zhang J. Occurance and control of manganese in a large scale water treatment plant. Frontiers of Environmental Science & Engineering, 2015, 9 (1): 66–72

    Article  Google Scholar 

  16. Ma L. Catalytic Reduction of Wastewater Technology-Mechanism and Application. Beijing: Science Press, 2008 (in Chinese)

    Google Scholar 

  17. Zhu H, Xu F, Zhao J, Jia L, Wu K. Catalytic hydrodechlorination of monochloroacetic acid in wastewater using Ni-Fe bimetal prepared by ball milling. Environmental Science and Pollution Research International, 2015, 22(18): 14299–14306

    Article  CAS  Google Scholar 

  18. Li J, He H, Hu C, Zhao J. The abatement of major pollutants in air and water by environmental catalysis. Frontiers of Environmental Science & Engineering, 2013, 7(3): 302–325

    Article  CAS  Google Scholar 

  19. Choe J K, Bergquist AM, Jeong S, Guest J S,Werth C J, Strathmann T J. Performance and life cycle environmental benefits of recycling spent ion exchange brines by catalytic treatment of nitrate. Water Research, 2015, 80: 267–280

    Article  CAS  Google Scholar 

  20. He Z, Hu M, Wang X. Highly effective hydrodeoxygenation of guaiacol on Pt/TiO2: Promoter effects. Catalysis Today, 2017

    Google Scholar 

  21. Chu X, Shan G, Chang C, Fu Y, Yue L, Zhu L. Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation. Frontiers of Environmental Science & Engineering, 2016, 10(2): 211–218

    Article  CAS  Google Scholar 

  22. Zhang X, Yue Q, Yue D, Gao B,Wang X. Application of Fe0/C/Clay ceramics for decoloration of synthetic Acid Red 73 and Reactive Blue 4 wastewater by micro-electrolysis. Frontiers of Environmental Science & Engineering, 2015, 9(3): 402–410

    Article  CAS  Google Scholar 

  23. Matatov-Meytal Y I, Sheintuch M. Catalytic abatement of water pollutants. Industrial & Engineering Chemistry Research, 1998, 37 (2): 309–326

    Article  CAS  Google Scholar 

  24. Barrabés N, Sá J. Catalytic nitrate removal from water, past, present and future perspectives. Applied Catalysis B: Environmental, 2011, 104(1–2): 1–5

    Article  Google Scholar 

  25. Martin E T, McGuire C M, Mubarak M S, Peters D G. Electroreductive remediation of halogenated environmental pollutants. Chemical Reviews, 2016, 116(24): 15198–15234

    Article  CAS  Google Scholar 

  26. Yuan Y, Tao H, Fan J, Ma L. Degradation of p-chloroaniline by persulfate activated with ferrous sulfide ore particles. Chemical Engineering Journal, 2015, 268: 38–46

    Article  CAS  Google Scholar 

  27. Niu J, Li Y, Shang E, Xu Z, Liu J. Electrochemical oxidation of perfluorinated compounds in water. Chemosphere, 2016, 146: 526–538

    Article  CAS  Google Scholar 

  28. Han Y, Yang M, Zhang W, Yan W. Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment. Frontiers of Environmental Science & Engineering, 2015, 9(5): 813–822

    Article  CAS  Google Scholar 

  29. Xiao J, Xie Y, Cao H, Wang Y, Guo Z, Chen Y. Towards effective design of active nanocarbon materials for integrating visible-light photocatalysis with ozonation. Carbon, 2016, 107: 658–666

    Article  CAS  Google Scholar 

  30. Díaz E, McCall A, Faba L, Sastre H, Ordõñez S. Trichloroethylene hydrodechlorination in water using formic acid as hydrogen source: selection of catalyst and operation conditions. Environmental Progress & Sustainable Energy, 2013, 32(4): 1217–1222

    Article  Google Scholar 

  31. Diaz E, Mohedano A F, Casas J A, Rodriguez J J. Analysis of the deactivation of Pd, Pt and Rh on activated carbon catalysts in the hydrodechlorination of the MCPA herbicide. Applied Catalysis B: Environmental, 2016, 181: 429–435

    Article  CAS  Google Scholar 

  32. Jadbabaei N, Ye T, Shuai D, Zhang H. Development of palladiumresin composites for catalytic hydrodechlorination of 4-chlorophenol. Applied Catalysis B: Environmental, 2017, 205: 576–586

    Article  CAS  Google Scholar 

  33. Palomares A E, Franch C, Yuranova T, Kiwi-Minsker L, García-Bordeje E, Derrouiche S. The use of Pd catalysts on carbon-based structured materials for the catalytic hydrogenation of bromates in different types of water. Applied Catalysis B: Environmental, 2014, 146: 186–191

    Article  CAS  Google Scholar 

  34. Hildebrand H, Mackenzie K, Kopinke F D. Highly active Pd-onmagnetite nanocatalysts for aqueous phase hydrodechlorination reactions. Environmental Science & Technology, 2009, 43(9): 3254–3259

    Article  CAS  Google Scholar 

  35. Wu D, Shao B, Feng Y, Ma L. Effects of Cu2+, Ag+, and Pd2+ on the reductive debromination of 2,5-dibromoaniline by the ferrous hydroxy complex. Environmental Technology, 2015, 36(7): 901–908

    Article  CAS  Google Scholar 

  36. Li L, Gong L, Wang Y X, Liu Q, Zhang J, Mu Y, Yu H Q. Removal of halogenated emerging contaminants from water by nitrogendoped graphene decorated with palladium nanoparticles: Experimental investigation and theoretical analysis. Water Research, 2016, 98: 235–241

    Article  CAS  Google Scholar 

  37. Witonska I A, Walock M J, Binczarski M, Lesiak M, Stanishevsky A V, Karski S. Pd–Fe/SiO2 and Pd–Fe/Al2O3 catalysts for selective hydrodechlorination of 2,4-dichlorophenol into phenol. Journal of Molecular Catalysis A Chemical, 2014, 393: 248–256

    Article  CAS  Google Scholar 

  38. Zhou Y, Kuang Y, Li W, Chen Z, Megharaj M, Naidu R. A combination of bentonite-supported bimetallic Fe/Pd nanoparticles and biodegradation for the remediation of p-chlorophenol in wastewater. Chemical Engineering Journal, 2013, 223: 68–75

    Article  CAS  Google Scholar 

  39. Han Y, Liu C, Horita J, Yan W. Trichloroethene hydrodechlorination by Pd-Fe bimetallic nanoparticles: Solute-induced catalyst deactivation analyzed by carbon isotope fractionation. Applied Catalysis B: Environmental, 2016, 188: 77–86

    Article  CAS  Google Scholar 

  40. Xiao J, Xie Y, Cao H, Wang Y, Zhao Z. g-C3N4-triggered super synergy between photocatalysis and ozonation attributed to promoted OH generation. Catalysis Communications, 2015, 66: 10–14

    Article  CAS  Google Scholar 

  41. Xu F, Deng S, Xu J, Zhang W, Wu M, Wang B, Huang J, Yu G. Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol. Environmental Science & Technology, 2012, 46(8): 4576–4582

    Article  CAS  Google Scholar 

  42. Hu M, Wang X. Effect of N3 species on selective acetylene hydrogenation over Pd/SAC catalysts. Catalysis Today, 2016, 263: 98–104

    Article  CAS  Google Scholar 

  43. Cobo M, González C A, Sánchez E G, Montes C. Catalytic hydrodechlorination of trichloroethylene with 2-propanol over Pd/ Al2O3. Catalysis Today, 2011, 172(1): 78–83

    Article  CAS  Google Scholar 

  44. He F, Zhao D. Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles: reaction mechanism and effects of stabilizers, catalysts and reaction conditions. Applied Catalysis B: Environmental, 2008, 84(3–4): 533–540

    Article  CAS  Google Scholar 

  45. Wu K, Zheng M, Han Y, Xu Z, Zheng S. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts. Applied Surface Science, 2016, 376: 113–120

    Article  CAS  Google Scholar 

  46. Hu M, Yao Z, Hui K N, Hui K S. Novel mechanistic view of catalytic ozonation of gaseous toluene by dual-site kinetic modelling. Chemical Engineering Journal, 2017, 308: 710–718

    Article  CAS  Google Scholar 

  47. Hu M, Hui K S, Hui K N. Role of graphene in MnO2/graphene composite for catalytic ozonation of gaseous toluene. Chemical Engineering Journal, 2014, 254: 237–244

    Article  CAS  Google Scholar 

  48. Hu M, Yao Z,Wang X. Graphene-based nanomaterials for catalysis. Industrial & Engineering Chemistry Research, 2017, 56(13): 3477–3502

    Article  CAS  Google Scholar 

  49. Wang X, Zhu M, Liu H, Ma J, Li F. Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2,4-dichlorophenol. Science of the Total Environment, 2013, 449: 157–167

    Article  CAS  Google Scholar 

  50. Trujillo-Reyes J, Peralta-Videa J R, Gardea-Torresdey J L. Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? Journal of Hazardous Materials, 2014, 280: 487–503

    Article  CAS  Google Scholar 

  51. Luo S, Yang S, Wang X, Sun C. Reductive degradation of tetrabromobisphenol using iron-silver and iron-nickel bimetallic nanoparticles with microwave energy. Environmental Engineering Science, 2012, 29(6): 453–460

    Article  CAS  Google Scholar 

  52. Huang B, Qian W, Yu C,Wang T, Zeng G, Lei C. Effective catalytic hydrodechlorination of o-, p-and m-chloronitrobenzene over Ni/Fe nanoparticles: Effects of experimental parameter and molecule structure on the reduction kinetics and mechanisms. Chemical Engineering Journal, 2016, 306: 607–618

    Article  CAS  Google Scholar 

  53. Li A, Zhao X, Hou Y, Liu H, Wu L, Qu J. The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Femodified carbon paper electrode. Applied Catalysis B: Environmental, 2012, 111–112: 628–635

    Article  Google Scholar 

  54. Esclapez M D, Tudela I, Díez-García M I, Sáez V, Rehorek A, Bonete P, González-García J. Towards the complete dechlorination of chloroacetic acids in water by sonoelectrochemical methods: Effect of the anodic material on the degradation of trichloroacetic acid and its by-products. Chemical Engineering Journal, 2012, 197: 231–241

    Article  CAS  Google Scholar 

  55. Sadowsky D, McNeill K, Cramer C J. Thermochemical factors affecting the dehalogenation of aromatics. Environmental Science & Technology, 2013, 47(24): 14194–14203

    Article  CAS  Google Scholar 

  56. Baumgartner R, Stieger G K, McNeill K. Complete hydrodehalogenation of polyfluorinated and other polyhalogenated benzenes under mild catalytic conditions. Environmental Science & Technology, 2013, 47(12): 6545–6553

    CAS  Google Scholar 

  57. Sadowsky D, McNeill K, Cramer C J. Dehalogenation of aromatics by nucleophilic aromatic substitution. Environmental Science & Technology, 2014, 48(18): 10904–10911

    Article  CAS  Google Scholar 

  58. Baumgartner R, McNeill K. Hydrodefluorination and hydrogenation of fluorobenzene under mild aqueous conditions. Environmental Science & Technology, 2012, 46(18): 10199–10205

    CAS  Google Scholar 

  59. Yu Y H, Chiu P C. Kinetics and pathway of vinyl fluoride reduction over rhodium. Environmental Science & Technology Letters, 2014, 1(11): 448–452

    Article  CAS  Google Scholar 

  60. Wong M S, Alvarez P J J, Fang Y, Akçin N, Nutt M O, Miller J T, Heck K N. Cleaner water using bimetallic nanoparticle catalysts. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2009, 84(2): 158–166

    Article  CAS  Google Scholar 

  61. Lowry G V, Reinhard M. Hydrodehalogenation of 1-to 3-carbon halogenated organic compounds in water using a palladium catalyst and hydrogen gas. Environmental Science & Technology, 1999, 33 (11): 1905–1910

    Article  CAS  Google Scholar 

  62. Urbano F J, Marinas J M. Hydrogenolysis of organohalogen compounds over palladium supported catalysts. Journal of Molecular Catalysis A Chemical, 2001, 173(1–2): 329–345

    Article  CAS  Google Scholar 

  63. Liu W J, Qian T T, Jiang H. Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chemical Engineering Journal, 2014, 236: 448–463

    Article  CAS  Google Scholar 

  64. Baumgartner R, Stieger G K, McNeill K. Complete hydrodehalogenation of polyfluorinated and other polyhalogenated benzenes under mild catalytic conditions. Environmental Science & Technology, 2013, 47(12): 6545–6553

    CAS  Google Scholar 

  65. Díaz E, Faba L, Ordóñez S. Effect of carbonaceous supports on the Pd-catalyzed aqueous-phase trichloroethylene hydrodechlorination. Applied Catalysis B: Environmental, 2011, 104(3–4): 415–417

    Article  Google Scholar 

  66. Fan J, Xu W, Gao T, Ma L. Stability analysis of alkaline nitrobenzene-containing wastewater by a catalyzed Fe-Cu treatment process. Frontiers of Environmental Science & Engineering in China, 2007, 1(4): 504–508

    Article  Google Scholar 

  67. Ezzatahmadi N, Ayoko G A, Millar G J, Speight R, Yan C, Li J, Li S, Zhu J, Xi Y. Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. Chemical Engineering Journal, 2017, 312: 336–350

    Article  CAS  Google Scholar 

  68. Tang Y, Ziv-El M, Zhou C, Shin J H, Ahn C H, Meyer K, Candelaria D, Friese D, Overstreet R, Scott R, Rittmann B E. Bioreduction of nitrate in groundwater using a pilot-scale hydrogen-based membrane biofilm reactor. Frontiers of Environmental Science & Engineering in China, 2010, 4(3): 280–285

    Article  CAS  Google Scholar 

  69. Siedel C, Darby J, Jensen V. An Assessment of state of Nitrate treatment Alternatives, Final Report. Davis: The American Water Works Association Inorganic Contaminant Research and Inorganic Water Quality Joint Project Committees, 2011

    Google Scholar 

  70. Radjenovic J, Sedlak D L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environmental Science & Technology, 2015, 49(19): 11292–11302

    Article  CAS  Google Scholar 

  71. Lecloux A J. Chemical, biological and physical constrains in catalytic reduction processes for purification of drinking water. Catalysis Today, 1999, 53(1): 23–34

    Article  CAS  Google Scholar 

  72. Krawczyk N, Karski S,Witonska I. The effect of support porosity on the selectivity of Pd–In/support catalysts in nitrate reduction. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103(2): 311–323

    Article  CAS  Google Scholar 

  73. Ding Y, Sun W, Yang W, Li Q. Formic acid as the in-situ hydrogen source for catalytic reduction of nitrate in water by PdAg alloy nanoparticles supported on amine-functionalized SiO2. Applied Catalysis B: Environmental, 2017, 203: 372–380

    Article  CAS  Google Scholar 

  74. Mendow G, Marchesini F A, Miró E E, Querini C A. Evaluation of pd-in supported catalysts for water nitrate Abatement in a fixed-bed continuous reactor. Industrial & Engineering Chemistry Research, 2011, 50(4): 1911–1920

    Article  CAS  Google Scholar 

  75. Marchesini F A, Irusta S, Querini C, Miró E. Spectroscopic and catalytic characterization of Pd-In and Pt-In supported on Al2O3 and SiO2, active catalysts for nitrate hydrogenation. Applied Catalysis A, General, 2008, 348(1): 60–70

    Article  CAS  Google Scholar 

  76. Wada K, Hirata T, Hosokawa S, Iwamoto S, Inoue M. Effect of supports on Pd-Cu bimetallic catalysts for nitrate and nitrite reduction in water. Catalysis Today, 2012, 185(1): 81–87

    Article  CAS  Google Scholar 

  77. Sá J, Gasparovicova D, Hayek K, Halwax E, Anderson J A, Vinek H. Water denitration over a Pd-Sn/Al2O3 catalyst. Catalysis Letters, 2005, 105(3–4): 209–217

    Article  Google Scholar 

  78. Prüsse U, Hähnlein M, Daum J, Vorlop K D. Improving the catalytic nitrate reduction. Catalysis Today, 2000, 55(1–2): 79–90

    Article  Google Scholar 

  79. Kim M S, Lee DW, Chung S H, Kim J T, Cho I H, Lee K Y. Pd-Cu bimetallic catalysts supported on TiO2-CeO2 mixed oxides for aqueous nitrate reduction by hydrogen. Journal of Molecular Catalysis A Chemical, 2014, 392: 308–314

    Article  CAS  Google Scholar 

  80. Epron F, Gauthard F, Barbier J. Influence of oxidizing and reducing treatments on the metal-metal interactions and on the activity for nitrate reduction of a Pt-Cu bimetallic catalyst. Applied Catalysis A, General, 2002, 237(1–2): 253–261

    Article  CAS  Google Scholar 

  81. Trawczynski J, Gheek P, Okal J, Zawadzki M, Gomez M J I. Reduction of nitrate on active carbon supported Pd-Cu catalysts. Applied Catalysis A, General, 2011, 409–410: 39–47

    Article  Google Scholar 

  82. Durkin D P, Ye T, Larson E G, Haverhals L M, Livi K J T, De Long H C, Trulove P C, Fairbrother D H, Shuai D. Lignocellulose fiberand welded fiber-supports for palladium-based catalytic hydrogenation: a natural fiber welding application for water treatment. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5511–5522

    Article  CAS  Google Scholar 

  83. Yun Y, Li Z, Chen Y H, Saino M, Cheng S, Zheng L. Reduction of nitrate in secondary effluent of wastewater treatment plants by Fe0 reductant and Pd-Cu/graphene catalyst. Water, Air, and Soil Pollution, 2016, 227(4): 111–120

    Article  Google Scholar 

  84. Hörold S, Tacke T, Vorlop K D. Catalytical removal of nitrate and nitrite from drinking water: 1. Screening for hydrogenation catalysts and influence of reaction conditions on activity and selectivity. Environmental Technology, 1993, 14(10): 931–939

    Article  Google Scholar 

  85. Garron A, Lázár K, Epron F. Effect of the support on tin distribution in Pd–Sn/Al2O3 and Pd–Sn/SiO2 catalysts for application in water denitration. Applied Catalysis B: Environmental, 2005, 59(1–2): 57–69

    Article  CAS  Google Scholar 

  86. Garron A, Lázár K, Epron F. Characterization by Mössbauer spectroscopy of trimetallic Pd–Sn–Au/Al2O3 and Pd–Sn–Au/SiO2 catalysts for denitration of drinking water. Applied Catalysis B: Environmental, 2006, 65(3–4): 240–248

    Article  CAS  Google Scholar 

  87. Costa A O, Ferreira L S, Passos F B, Maia M P, Peixoto F C. Microkinetic modeling of the hydrogenation of nitrate in water on Pd–Sn/Al2O3 catalyst. Applied Catalysis A, General, 2012, 445–446: 26–34

    Article  Google Scholar 

  88. Rocha E P A, Passos F B, Peixoto F C. Modeling of hydrogenation of nitrate in water on Pd–Sn/Al2O3 catalyst: estimation of microkinetic parameters and transport phenomena properties. Industrial & Engineering Chemistry Research, 2014, 53(21): 8726–8734

    Article  CAS  Google Scholar 

  89. Gao Z, Zhang Y, Li D, Werth C J, Zhang Y, Zhou X. Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction. Journal of Hazardous Materials, 2015, 286: 425–431

    Article  CAS  Google Scholar 

  90. Ye T, Durkin D P, Hu M, Wang X, Banek N A, Wagner M J, Shuai D. Enhancement of nitrite reduction kinetics on electrospun Pdcarbon nanomaterial catalysts for water purification. ACS Applied Materials & Interfaces, 2016, 8(28): 17739–17744

    Article  CAS  Google Scholar 

  91. Pintar A, Setinc M, Levec J. Hardness and salt effects on catalytic hydrogenation of aqueous nitrate solutions. Journal of Catalysis, 1998, 174(1): 72–87

    Article  CAS  Google Scholar 

  92. Chaplin B P, Shapley J R, Werth C J. Oxidative regeneration of sulfide-fouled catalysts for water treatment. Catalysis Letters, 2009, 132(1–2): 174–181

    Article  CAS  Google Scholar 

  93. Chaplin B P, Roundy E, Guy K A, Shapley J R,Werth C J. Effects of natural water ions and humic acid on catalytic nitrate reduction kinetics using an alumina supported Pd-Cu catalyst. Environmental Science & Technology, 2006, 40(9): 3075–3081

    Article  CAS  Google Scholar 

  94. Chaplin B P, Shapley J R, Werth C J. Regeneration of sulfur-fouled bimetallic Pd-based catalysts. Environmental Science & Technology, 2007, 41(15): 5491–5497

    Article  CAS  Google Scholar 

  95. Ng B J, Putri L K, Tan L L, Pasbakhsh P, Chai S P. All-solid-state Zscheme photocatalyst with carbon nanotubes as an electron mediator for hydrogen evolution under simulated solar light. Chemical Engineering Journal, 2017, 316: 41–49

    Article  CAS  Google Scholar 

  96. O’Keefe W K, Liu Y, Sasges M R, Wong M S, Fu H, Takata T, Domen K. Photocatalytic hydrodechlorination of trace carbon tetrachloride (CCl4) in aqueous medium. Industrial & Engineering Chemistry Research, 2014, 53(23): 9600–9607

    Article  Google Scholar 

  97. Liu D J, Garcia A, Wang J, Ackerman D M, Wang C J, Evans J W. Kinetic monte carlo simulation of statistical mechanical models and coarse-grained mesoscale descriptions of catalytic reaction-diffusion processes: 1D nanoporous and 2D surface systems. Chemical Reviews, 2015, 115(12): 5979–6050

    Article  CAS  Google Scholar 

  98. Konsolakis M. The role of Copper–Ceria interactions in catalysis science: recent theoretical and experimental advances. Applied Catalysis B: Environmental, 2016, 198: 49–66

    Article  CAS  Google Scholar 

  99. Bergquist A M, Choe J K, Strathmann T J, Werth C J. Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water. Water Research, 2016, 96: 177–187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianqin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Liu, Y., Yao, Z. et al. Catalytic reduction for water treatment. Front. Environ. Sci. Eng. 12, 3 (2018). https://doi.org/10.1007/s11783-017-0972-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0972-0

Keywords

Navigation