Skip to main content
Log in

Leaching toxicity characteristics of municipal solid waste incineration bottom ash

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The continuously increasing production of municipal solid waste incineration bottom ash (MSWIBA) has promoted its utilization as construction material and raised environmental concern. The physico-chemical properties and leaching behavior of MSWIBA were studied, and ecotoxicological testing using a luminescent bacterium bioassay was performed to assess the ecological pollution risks associated with its leached constituents. The MSWIBA was leached by two types of leachants, H2SO4/HNO3 and HAc solution, at different liquid to solid ratios and contact times. The concentrations of heavy metals and anions in the leachates were analyzed. Multivariate statistical analyses, including principle component analysis, Pearson’s correlation analysis and hierarchical cluster analysis, were used to evaluate the contributions of the constituents to the toxicity (EC 50) of the MSWIBA leachate. The statistical analyses of the ecotoxicological results showed that the Ba, Cr, Cu, Pb, Fand total organic carbon (TOC) concentrations were closely correlated with the EC 50 value, and these substances were the main contributors to the ecotoxicity of the MSWIBA leachate. In addition, the cluster of these variables indicated similar leaching behaviors. Overall, the research demonstrated that the ecotoxicological risks resulting from MSWIBA leaching could be assessed before its utilization, which provides crucial information for the adaptation of MSWIBA as alternative materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang M B, Chung Y T. Dioxin contents in fly ashes of MSW incineration in Taiwan. Chemosphere, 1998, 36(9): 1959–1968

    Article  CAS  Google Scholar 

  2. Wan X, Wang W, Ye T M, Guo Y W, Gao X B. A study on the chemical and mineralogical characterization of MSWI fly ash using a sequential extraction procedure. Journal of Hazardous Materials, 2006, 134(1–3): 197–201

    Article  CAS  Google Scholar 

  3. National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistical Press, 2014 (in Chinese)

  4. Yu J, Sun L, Xiang J, Jin L, Hu S, Su S, Qiu J. Physical and chemical characterization of ashes from a municipal solid waste incinerator in China. Waste Management & Research, 2013, 31(7): 663–673

    Article  CAS  Google Scholar 

  5. Zhang H, He P J, Shao L M. Fate of heavy metals during municipal solid waste incineration in Shanghai. Journal of Hazardous Materials, 2008, 156(1–3): 365–373

    Article  CAS  Google Scholar 

  6. Belevi H, Langmeier M. Factors determining the element behavior in municipal solid waste incinerators. 2. Laboratory experiments. Environmental Science & Technology, 2000, 34(12): 2507–2512

    Article  CAS  Google Scholar 

  7. Chen P W, Liu Z S,WunMJ, Ran C L. Evaluating the mutagenicity of leachates obtained from the bottom ash of a municipal solid waste incinerator by using a Salmonella reverse mutation assay. Chemosphere, 2015, 124: 70–76

    Article  CAS  Google Scholar 

  8. Dijkstra J J, van der Sloot H A, Comans R N J. The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Applied Geochemistry, 2006, 21(2): 335–351

    Article  CAS  Google Scholar 

  9. Shim Y S, Rhee S W, Lee W K. Comparison of leaching characteristics of heavy metals from bottom and fly ashes in Korea and Japan. Waste Management (New York, N.Y.), 2005, 25(5): 473–480

    Article  CAS  Google Scholar 

  10. Feng S, Wang X, Wei G, Peng P, Yang Y, Cao Z. Leachates of municipal solid waste incineration bottom ash from Macao: Heavy metal concentrations and genotoxicity. Chemosphere, 2007, 67(6): 1133–1137

    Article  CAS  Google Scholar 

  11. Arickx S, Van Gerven T, Boydens E, L’hoëst P, Blanpain B, Vandecasteele C. Speciation of Cu in MSWI bottom ash and its relation to Cu leaching. Applied Geochemistry, 2008, 2(12): 3642–3650

    Article  Google Scholar 

  12. Radetski C M, Ferrari B, Cotelle S, Masfaraud J F, Ferard J F. Evaluation of the genotoxic, mutagenic and oxidant stress potentials of municipal solid waste incinerator bottom ash leachates. Science of the Total Environment, 2004, 333(1–3): 209–216

    Article  CAS  Google Scholar 

  13. Fan H J, Shu H Y, Yang H S, Chen W C. Characteristics of landfill leachates in central Taiwan. Science of the Total Environment, 2006, 361(1–3): 25–37

    Article  CAS  Google Scholar 

  14. Barreto-Rodrigues M, Silva F T, Paiva T C B. Characterization of wastewater from the Brazilian TNT industry. Journal of Hazardous Materials, 2009, 164(1): 385–388

    Article  CAS  Google Scholar 

  15. Sponza D T, Oztekin R. Destruction of some more and less hydrophobic PAHs and their toxicities in a petrochemical industry wastewater with sonication in Turkey. Bioresource Technology, 2010, 101(22): 8639–8648

    Article  CAS  Google Scholar 

  16. Zhang X X, Sun S L, Zhang Y, Wu B, Zhang Z Y, Liu B, Yang L Y, Cheng S P. Toxicity of purified terephthalic acid manufacturing wastewater on reproductive system of male mice (Mus musculus). Journal of Hazardous Materials, 2010, 176(1–3): 300–305

    Article  CAS  Google Scholar 

  17. Farre M, Barcelo D. Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends in Analytical Chemistry, 2003, 22(5): 299–310

    Article  CAS  Google Scholar 

  18. Körner S, Das S K, Veenstra S, Vermaat J E. The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba. Aquatic Botany, 2001, 71(1): 71–78

    Article  Google Scholar 

  19. Lah B, Vidic T, Glasencnik E, Cepeljnik T, Gorjanc G, Marinsek- Logar R. Genotoxicity evaluation of water soil leachates by Ames test, comet assay, and preliminary Tradescantia micronucleus assay. Environmental Monitoring and Assessment, 2008, 139(1–3): 107–118

    Article  CAS  Google Scholar 

  20. Huerta B B, Ferrer M P, Ribe V, Larsson M, Engwall M, Wojciechowska E, Waara S. Hazard assessment of sediments from a wetland system for treatment of landfill leachate using bioassays. Ecotoxicology and Environmental Safety, 2013, 97: 255–262

    Article  Google Scholar 

  21. Stiernstrom S, Enell A, Wik O, Borg H, Breitholtz M. An ecotoxicological evaluation of aged bottom ash for use in constructions. Waste Management (New York, N.Y.), 2014, 34(1): 86–92

    Article  CAS  Google Scholar 

  22. Thomulka K W, McGee D J, Lange J H. Use of the bioluminescent bacterium Photobacterium phosphoreum to detect potentially biohazardous materials in water. Bulletin of Environmental Contamination and Toxicology, 1993, 51(4): 538–544

    Article  CAS  Google Scholar 

  23. Al-Mutairi N Z. Coagulant toxicity and effectiveness in a slaughterhouse wastewater treatment plant. Ecotoxicology and Environmental Safety, 2006, 65(1): 74–83

    Article  CAS  Google Scholar 

  24. Ren S. Assessing wastewater toxicity to activated sludge: recent research and developments. Environment International, 2004, 30(8): 1151–1164

    Article  CAS  Google Scholar 

  25. Ye Z, Zhao Q, Zhang M, Gao Y. Acute toxicity evaluation of explosive wastewater by bacterial bioluminescence assays using a freshwater luminescent bacterium, Vibrio qinghaiensis sp. Nov. Journal of Hazardous Materials, 2011, 186(2–3): 1351–1354

    Article  CAS  Google Scholar 

  26. Zhu W, Wang J, Chen X, Zhaxi C, Yang Y, Song Y. A new species of luminous bacteria Vibrio qinghaiensis sp. Nov. Oceanologia et Limnologia Sinica, 1994, 25: 273–280 (in Chinese)

    Google Scholar 

  27. Ma M, Tong Z, Wang Z, Zhu W. Acute toxicity bioassay using the freshwater luminescent bacterium Vibrio qinghaiensis sp. Nov.- Q67. Bulletin of Environmental Contamination and Toxicology, 1999, 62(3): 247–253

    Article  CAS  Google Scholar 

  28. Zhang H, He P J, Shao L M, Li X J. Leaching behavior of heavy metals from municipal solid waste incineration bottom ash and its geochemical modeling. Journal of Material Cycles and Waste Management, 2008, 10(1): 7–13

    Article  CAS  Google Scholar 

  29. ASTM International. Standard Test Method for Assessing the Microbial Detoxification of Chemically Contaminated Water and Soil Using a Toxicity Test with a Luminescent Marine Bacterium. ASTM D56–96, Pennsylvania, United States, 2009

    Google Scholar 

  30. Fernández-Alba A R, Hernando Guil M D, López G D, Chisti Y. Comparative evaluation of the effects of pesticides in acute toxicity luminescence bioassays. Analytica Chimica Acta, 2002, 451(2): 195–202

    Article  Google Scholar 

  31. Quevauviller P, Thomas O, van der Beken A. Wastewater Quality Monitoring and Treatment. John Wiley & Sons, Ltd, England, 2006

    Book  Google Scholar 

  32. Zheng W, Phoungthong K, Lü F, Shao L M, He P J. Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Management (New York, N.Y.), 2013, 33(12): 2632–2640

    Article  CAS  Google Scholar 

  33. European Committee for Standardization. Unbound Mixtures- Specifications. CEN EN 1 3285, 2004

  34. Chinese Standard. Standard for pollution control on the municipal solid waste incineration. GB 1 8485, 2014 (in Chinese)

  35. Li X G, Lv Y, Ma B G, Chen Q B, Yin X B, Jian S W. Utilization of municipal solid waste incineration bottom ash in blended cement. Journal of Cleaner Production, 2012, 32: 96–100

    Article  CAS  Google Scholar 

  36. Rendek E, Ducom G, Germain P. Influence of waste input and combustion technology on MSWI bottom ash quality. Waste Management (New York, N.Y.), 2007, 27(10): 1403–1407

    Article  Google Scholar 

  37. Chang C Y, Wang C F, Mui D T, Cheng M T, Chiang H L. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan. Journal of Hazardous Materials, 2009, 165(1–3): 1351–1354

    Google Scholar 

  38. Rocca S, van Zomeren A, Costa G, Dijkstra J J, Comans R N J, Lombardi F. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Waste Management (New York, N.Y.), 2012, 32(4): 759–768

    Article  CAS  Google Scholar 

  39. Ni M, Du Y, Lu S, Peng Z, Li X, Yan J, Cen K. Study of ashes from a medical waste incinerator in China: physical and chemical characteristics on fly ash, ash deposits and bottom ash. Environmental Progress & Sustainable Energy, 2013, 32(3): 496–504

    Article  CAS  Google Scholar 

  40. Li M, Xiang J, Hu S, Sun L S, Su S, Li P S, Sun X X. Characterization of solid residues from municipal solid waste incinerator. Fuel, 2004, 83(10): 1397–1405

    Article  CAS  Google Scholar 

  41. Haykiri-Acma H, Yaman S, Ozbek N, Kucukbayrak S. Mobilization of some trace elements from ashes of Turkish lignites in rain water. Fuel, 2011, 90(11): 3447–3455

    Article  CAS  Google Scholar 

  42. Saikia N, Kato S, Kojima T. Compositions and leaching behaviours of combustion residues. Fuel, 2006, 85(2): 264–271

    Article  CAS  Google Scholar 

  43. Chang E E, Chiang P C, Lu P H, Ko Y W. Comparisons of metal leachability for various wastes by extraction and leaching methods. Chemosphere, 2001, 45(1): 91–99

    Article  CAS  Google Scholar 

  44. Chiang K Y, Tsai C C, Wang K S. Comparison of leaching characteristics of heavy metals in APC residue from an MSW incinerator using various extraction methods. Waste Management (New York, N.Y.), 2009, 29(1): 277–284

    Article  CAS  Google Scholar 

  45. US Environmental Protection Agency (US EPA). RCRA training modules, Introduction to hazardous waste identification. Washington, DC., USA, 2003

  46. Ministry of Environmental Protection of the People’s Republic of China (MEP). Identification standards for hazardous wastes- Identification for extraction toxicity. GB 5085.3–2007. Beijing, China, 2007 (in Chinese)

  47. Skodras G, Grammelis P, Prokopidou M, Kakaras E, Sakellaropoulos G. Chemical, leaching and toxicity characteristics of CFB combustion residues. Fuel, 2009, 88(7): 1201–1209

    Article  CAS  Google Scholar 

  48. Barbosa R, Dias D, Lapa N, Lopes H, Mendes B. Chemical and ecotoxicological properties of size fractionated biomass ashes. Fuel Processing Technology, 2013, 109: 124–132

    Article  CAS  Google Scholar 

  49. Ore S, Todorovic J, Ecke H, Grennberg K, Lidelöw S, Lagerkvist A. Toxicity of leachate from bottom ash in a road construction. Waste Management (New York, N.Y.), 2007, 27(11): 1626–1637

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phoungthong, K., Xia, Y., Zhang, H. et al. Leaching toxicity characteristics of municipal solid waste incineration bottom ash. Front. Environ. Sci. Eng. 10, 399–411 (2016). https://doi.org/10.1007/s11783-015-0819-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-015-0819-5

Keywords

Navigation