Skip to main content
Log in

Catalytic activities and mechanism of formaldehyde oxidation over gold supported on MnO2 microsphere catalysts at room temperature

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

MnO2 microspheres with various surface structures were prepared using the hydrothermal method, and Au/MnO2 catalysts were synthesized using the sol-gel method. We obtained three MnO2 microspheres and Au/MnO2 samples: coherent solid spheres covered with wire-like nanostructures, solid spheres with nanosheets, and hierarchical hollow microspheres with nanoplatelets and nanorods. We investigated the properties and catalytic activities of formaldehyde oxidation at room temperature. Crystalline structures of MnO2 are the main factor affecting the catalytic activities of these samples, and γ-MnO2 shows high catalytic performance. The excellent redox properties are responsible for the catalytic ability of γ-MnO2. The gold-supported interaction can change the redox properties of catalysts and accelerate surface oxygen species transition, which can account for the catalytic activity enhancement of Au/MnO2. We also studied intermediate species. The dioxymethylene (DOM) and formate species formed on the catalyst surface were considered intermediates, and were ultimately transformed into hydrocarbonate and carbonate and then decomposed into CO2. A proposed mechanism of formaldehyde oxidation over Au/MnO2 catalysts was also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Salthammer T, Mentese S, Marutzky R. Formaldehyde in the indoor environment. Chemical Reviews, 2010, 110(4): 2536–2572

    Article  CAS  Google Scholar 

  2. Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W. MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Applied Catalysis B: Environmental, 2006, 62(3–4): 265–273

    Article  CAS  Google Scholar 

  3. Bai B, Arandiyan H, Li J. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3DCo3O4 catalysts. Applied Catalysis B: Environmental, 2013, 142–143: 677–683

    Article  Google Scholar 

  4. Quiroz Torres J, Royer S, Bellat J P, Giraudon J M, Lamonier J F. Formaldehyde: catalytic oxidation as a promising soft way of elimination. ChemSusChem, 2013, 6(4): 578–592

    Article  CAS  Google Scholar 

  5. Tian H, He J, Liu L, Wang D, Hao Z, Ma C. Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde. Microporous and Mesoporous Materials, 2012, 151 (15): 397–402

    Article  CAS  Google Scholar 

  6. Ma C, Wang D, Xue W, Dou B, Wang H, Hao Z. Investigation of formaldehyde oxidation over Co3O4-CeO2 and Au/Co3O4–CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism. Environmental Science & Technology, 2011, 45(8): 3628–3634

    Article  CAS  Google Scholar 

  7. Wang Y, Zhu A, Chen B, Crocker M, Shi C. Three-dimensional ordered mesoporous Co–Mn oxide: a highly active catalyst for “storage–oxidation” cycling for the removal of formaldehyde. Catalysis Communications, 2013, 36: 52–57

    Article  Google Scholar 

  8. Tang X, Chen J, Li Y, Li Y, Xu Y, Shen W. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts. Chemical Engineering Journal, 2006, 118(1–2): 119–125

    Article  CAS  Google Scholar 

  9. Chen B, Zhu X, Crocker M, Wang Y, Shi C. Complete oxidation of formaldehyde at ambient temperature over γ-Al2O3 supported Au catalyst. Catalysis Communications, 2013, 42: 93–97

    Article  Google Scholar 

  10. Zhou L, Zhang J, He J, Hu Y, Tian H. Control over the morphology and structure of manganese oxide by tuning reaction conditions and catalytic performance for formaldehyde oxidation. Materials Research Bulletin, 2011, 46(10): 1714–1722

    Article  CAS  Google Scholar 

  11. Tian H, He J, Zhang X, Zhou L, Wang D. Facile synthesis of porous manganese oxide K-OMS-2 materials and their catalytic activity for formaldehyde oxidation. Microporous and Mesoporous Materials, 2011, 138(1–3): 118–122

    Article  CAS  Google Scholar 

  12. Chen H, He J, Zhang C, He H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. Journal of Physical Chemistry C, 2007, 111(49): 18033–18038

    Article  CAS  Google Scholar 

  13. Lamaita L, Peluso M A, Sambeth J E, Thomas H, Mineli G, Porta P. A theoretical and experimental study of manganese oxides used as catalysts for VOCs emission reduction. Catalysis Today, 2005, 107–108: 133–138

    Article  Google Scholar 

  14. Fu X, Feng J, Wang H, Ng K M. Fast synthesis and formation mechanism of γ-MnO2 hollow nanospheres for aerobic oxidation of alcohols. Materials Research Bulletin, 2010, 45(9): 1218–1223

    Article  CAS  Google Scholar 

  15. Li D, Wu X, Chen Y. Synthesis of hierarchical hollow MnO2 microspheres and potential application in abatement of VOCs. Journal of Physical Chemistry C, 2013, 117(21): 11040–11046

    Article  CAS  Google Scholar 

  16. Yu X, He J, Wang D, Hu Y, Tian H, He Z. Facile controlled synthesis of Pt/MnO2 nanostructured catalysts and their catalytic performance for oxidative decomposition of formaldehyde. Journal of Physical Chemistry C, 2012, 116(1): 851–860

    Article  CAS  Google Scholar 

  17. Yu X, He J, Wang D, Hu Y C, Tian H, Dong T, He Z. Au–Pt bimetallic nanoparticles supported on nest-likeMnO2: synthesis and application in HCHO decomposition. Journal of Nanoparticle Research, 2012, 14(11): 1260–1273

    Article  Google Scholar 

  18. Munaiah Y, Gnana Sundara Raj B, Prem Kumar T, Ragupathy P. Facile synthesis of hollow sphere amorphous MnO2: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(13): 4300–4306

    Article  CAS  Google Scholar 

  19. Sing K S W, Evrett D H, Haul R A W, Moscou L, Pierotti R A, Rouqerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57(4): 603–619

    Article  CAS  Google Scholar 

  20. Torres J Q, Giraudon J M, Lamonier J F. Formaldehyde total oxidation over mesoporous MnO x catalysts. Catalysis Today, 2011, 176(1): 277–280

    Article  CAS  Google Scholar 

  21. Li X, Cui Y, Yang X, Dai W, Fan K. Highly efficient and stable Au/Mn2O3 catalyst for oxidative cyclization of 1,4-butanediol to -butyrolactone. Applied Catalysis A, General, 2013, 458(10): 63–70

    Article  CAS  Google Scholar 

  22. Lin X, Uzayisenga V, Li J, Fang P, Wu D Y, Ren B, Tian Z Q. Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Journal of Raman Spectroscopy: JRS, 2012, 43(1): 40–45

    Article  CAS  Google Scholar 

  23. Longo A, Liotta L F, Carlo G D, Giannici F, Venezia A M, Martorana A. Structure and the metal support interaction of the Au/ Mn oxide catalysts. Chemistry of Materials, 2010, 22(13): 3952–3960

    Article  CAS  Google Scholar 

  24. Wang L, Liu Y, Chen M, Cao Y, He H Y, Fan K N. MnO2 nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation. Journal of Physical Chemistry C, 2008, 112(17): 6981–6987

    Article  CAS  Google Scholar 

  25. Wang L C, Huang X S, Liu Q, Liu Y M, Cao Y, He H Y, Fan K N, Zhuang J H. Gold nanoparticles deposited on manganese (III) oxide as novel efficient catalyst for low temperature CO oxidation. Journal of Catalysis, 2008, 259(1): 66–74

    Article  CAS  Google Scholar 

  26. Ye Q, Zhao J, Huo F, Wang D, Cheng S, Kang T, Dai H. Nanosized Au supported on three-dimensionally ordered mesoporous ß-MnO2: highly active catalysts for the low-temperature oxidation of carbon monoxide, benzene, and toluene. Microporous and Mesoporous Materials, 2013, 172: 20–29

    Article  CAS  Google Scholar 

  27. Durand J P, Senanayake S D, Suib S L, Mullins D R. Reaction of formic acid over amorphous manganese oxide catalytic systems: an in situ study. Journal of Physical Chemistry C, 2010, 114(47): 20000–20006

    Article  CAS  Google Scholar 

  28. Chen D, Qu Z, Sun Y, Gao K, Wang Y. Identification of reaction intermediates and mechanism responsible for highly active HCHO oxidation on Ag/MCM-41 catalysts. Applied Catalysis B: Environmental, 2013, 142–143: 838–848

    Article  Google Scholar 

  29. Kecskés T, Raskó J, Kiss J. FTIR and mass spectrometric studies on the interaction of formaldehyde with TiO2 supported Pt and Au catalysts. Applied Catalysis A: General, 2004, 273(1–2): 55–62

    Article  Google Scholar 

  30. Laberty C, Marquez-Alvarez C, Drouet C, Alphonse P, Mirodatos C. CO oxidation over nonstoichiometric nickel manganite spinels. Journal of Catalysis, 2001, 198(2): 266–276

    Article  CAS  Google Scholar 

  31. Busca G, Lamotte J, Lavalley J, Lorenzelli V. FT-IR study of the adsorption and transformation of formaldehyde on oxide surfaces. Journal of the American Chemical Society, 1987, 109(17): 5197–5202

    Article  CAS  Google Scholar 

  32. Popova G A, Budneva A A, Andrushkevich T V. Identification of adsorption forms by ir spectroscopy for formaldehyde and formic acid on K3PMo12O40. Reaction Kinetics and Catalysis Letters, 1997, 61(2): 353–362

    Article  CAS  Google Scholar 

  33. Chen B, Shi C, Crocker M, Wang Y, Zhu A. Catalytic removal of formaldehyde at room temperature over supported gold Catalysts. Applied Catalysis B: Environmental, 2013, 132–133: 245–255

    Article  Google Scholar 

  34. Zhao D Z, Shi C, Li X, Zhu A, Jang B W.-L. Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over MnO x catalysts at room temperature. Journal of Hazardous Materials, 2012, 239–240: 362–369

    Article  Google Scholar 

  35. Bond G C, Thompson D T. Gold-catalysed oxidation of carbon monoxide. Gold Bulletin, 2000, 33(2): 41–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyan Ma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, G., Wang, D., Zhang, Y. et al. Catalytic activities and mechanism of formaldehyde oxidation over gold supported on MnO2 microsphere catalysts at room temperature. Front. Environ. Sci. Eng. 10, 447–457 (2016). https://doi.org/10.1007/s11783-015-0808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-015-0808-8

Keywords

Navigation