Skip to main content
Log in

Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in biodegradation process

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Bioremediation of hydrophobic organic compounds (HOCs) contaminated soils involves several physicochemical and microbiological interfacial processes among the soil-water-microorganism interfaces. The participation of surfactants facilitates the mass transport of HOCs in both the physicochemical and microbiological interfaces by reducing the interfacial tension. The effects and underlying mechanisms of surfactants on the physicochemical desorption of soil-sorbed HOCs have been widely studied. This paper reviewed the progress made in understanding the effects of surfactant on microbiological interfacial transport of HOCs and the underlying mechanisms, which is vital for a better understanding and control of the mass transfer of HOCs in the biodegradation process. In summary, surfactants affect the microbiological interfacial behaviors of HOCs during three consecutive processes: the soil solution-microorganism sorption, the transmembrane process, and the intracellular metabolism. Surfactant could promote cell sorption of HOCs depending on the compatibility of surfactant hydrophile hydrophilic balance (HLB) with cell surface properties; while the dose ratio between surfactant and biologic mass (membrane lipids) determined the transmembrane processes. Although surfactants cannot easily directly affect the intracellular enzymatic metabolism of HOCs due to the steric hindrace, the presence of surfactants can indirectly enhanced the metabolism by increasing the substrate concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Churchill P F, Dudley R J, Churchill S A. Surfactant-enhanced bioremediation. Waste Management, 1995, 15(5–6): 371–377

    CAS  Google Scholar 

  2. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R. Bioremediation approaches for organic pollutants: a critical perspective. Environmental International, 2011, 37(8): 1362–1375

    CAS  Google Scholar 

  3. Kim Y M, Ahn C K, Woo S H, Jung G Y, Park J M. Synergic degradation of phenanthrene by consortia of newly isolated bacterial strains. Journal of Biotechnology, 2009, 144(4): 293–298

    CAS  Google Scholar 

  4. Zhu L Z, Lu L, Zhang D. Mitigation and remediation technologies for organic contaminated soils. Frontiers of Environmental Science & Engineering in China, 2010, 4(4): 373–386

    CAS  Google Scholar 

  5. Zhu L Z. Controlling technology of interfacial behaviors of organic pollutants and its application. Acta Scientiae Circumstantiae, 2012, 32(11): 2641–2649 (in Chinese)

    CAS  Google Scholar 

  6. Yang K, Zhu L Z, Xing B S. Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS. Environmental Science & Technology, 2006, 40(13): 4274–4280

    CAS  Google Scholar 

  7. Yu H, Zhu L, Zhou W. Enhanced desorption and biodegradation of phenanthrene in soil-water systems with the presence of anionic-nonionic mixed surfactants. Journal of Hazardous Materials, 2007, 142(1–2): 354–361

    CAS  Google Scholar 

  8. Zhao B W, Zhu L Z, Li W, Chen B L. Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solutions. Chemosphere, 2005, 58(1): 33–40

    CAS  Google Scholar 

  9. Kile D E, Chiou C T. Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environmental Science & Technology, 1989, 23(7): 832–838

    CAS  Google Scholar 

  10. Rosen M J Surfactants and Interfacial Phenomena. Hoboken: Wiley-Interscience, 2004

    Google Scholar 

  11. Gao Y Z, Zhu L Z. Phytoremediation for phenanthrene and pyrene contaminated soils. Journal of Environmental Science-China, 2005, 17(1): 14–18

    CAS  Google Scholar 

  12. Americane Petrolum Institute. Underground Movements of Gasoline on Groundwater and Enhanced Recovery by Surfactants. Washington, D C: API Publication, 1979, No. 4317

    Google Scholar 

  13. Paria S. Surfactant-enhanced remediation of organic contaminated soil and water. Advances in Colloid and Interface Science, 2008, 138(1): 24–58

    CAS  Google Scholar 

  14. Chen B, Wang Y, Hu D. Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi. Journal of Hazardous Materials, 2010, 179(1–3): 845–851

    CAS  Google Scholar 

  15. Al-Tahhan R A, Sandrin T R, Bodour A A, Maier R M. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Applied and Environmental Microbiology, 2000, 66(8): 3262–3268

    CAS  Google Scholar 

  16. Zhang D, Zhu L Z. Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1. Environmental Pollution, 2012, 164: 169–174

    CAS  Google Scholar 

  17. Chan S M N, Luan T, Wong M H, Tam N F Y. Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environmental Toxicology and Chemistry, 2006, 25(7): 1772–1779

    CAS  Google Scholar 

  18. Stringfellow W T, Alvarez-Cohen L. Evaluating the relationship between the sorption of PAHs to bacterial biomass and biodegradation. Water Research, 1999, 33(11): 2535–2544

    CAS  Google Scholar 

  19. Vijayaraghavan K, Yun Y S. Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution. Journal of Hazardous Materials, 2007, 141(1): 45–52

    CAS  Google Scholar 

  20. Xiao L, Qu X, Zhu D. Biosorption of nonpolar hydrophobic organic compounds to Escherichia coli facilitated by metal and proton surface binding. Environmental Science & Technology, 2007, 41(8): 2750–2755

    Google Scholar 

  21. Chakraborty S, Mukherji S, Mukherji S. Surface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces. Colloids and Surface BBiointerfaces, 2010, 78(1): 101–108

    CAS  Google Scholar 

  22. Owsianiak M, Szulc A, Chrzanowski L, Cyplik P, Bogacki M, Olejnik-Schmidt A K, Heipieper H J. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity. Applied Microbiology and Biotechnology, 2009, 84(3): 545–553

    CAS  Google Scholar 

  23. Zeng G M, Liu Z F, Zhong H, Li J B, Yuan X Z, Fu H Y, Ding Y, Wang J, Zhou M F. Effect of monorhamnolipid on the degradation of n-hexadecane by Candida tropicalis and the association with cell surface properties. Applied Microbiology and Biotechnology, 2011, 90(3): 1155–1161

    CAS  Google Scholar 

  24. Zhao Z Y, Selvam A, Wong JWC. Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene. Bioresource Technology, 2011, 102(5): 3999–4007

    CAS  Google Scholar 

  25. Johnsen A R, Wick L Y, Harms H. Principles of microbial PAH-degradation in soil. Environmental Pollution, 2005, 133(1): 71–84

    CAS  Google Scholar 

  26. Rosenberg M, Gutnick D, Rosenberg E. Adherence of bacteria to hydrocarbons — a simple method for measuring cell-surface hydrophobicity. FEMS Microbiology Letters, 1980, 9(1): 29–33

    CAS  Google Scholar 

  27. Lindahl M, Faris A, Wadstrom T, Hjerten S. A new test based on salting out to measure relative surface hydrophobicity of bacterial cells. Biochimica et Biophysica Acta-Biomembranes, 1981, 277: 471–476

    Google Scholar 

  28. Resenberg M, Rosenberg E. Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Journal of Bacteriology, 1981, 148: 51–57

    Google Scholar 

  29. Ismaeel N, Furr J, Pugh W J, Russell A D, Pugh W, Russell A. Hydrophobic properties of Providencia stuartii and other Gram-negative bacteria measured by hydrophobic interaction chromatography. Letters in Applied Microbiology, 1987, 5(5): 91–95

    CAS  Google Scholar 

  30. Busscher H, Weerkamp A, Mei H D, Pilt A V, Jong H D, Arends J. Measurement of the surface free energy of bacteria cell surfaces and its relevance for adhesion. Applied and Environmental Microbiology, 1984, 48: 980–993

    CAS  Google Scholar 

  31. Brown D G, Jaffe P R. Effects of nonionic surfactants on the cell surface hydrophobicity and apparent hamaker constant of a Sphingomonas sp. Environmental Science & Technology, 2006, 40(1): 195–201

    CAS  Google Scholar 

  32. Wady A F, Machado A L, Zucolotto V, Zamperini C A, Berni E, Vergani C E. Evaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. Journal of Applied Microbiology, 2012, 112(6): 1163–1172

    CAS  Google Scholar 

  33. Mishra S, Singh S N. Microbial degradation of n-hexadecane in mineral salt medium as mediated by degradative enzymes. Bioresource Technology, 2012, 111: 148–154

    CAS  Google Scholar 

  34. Kaczorek E, Jesionowski T, Giec A, Olszanowski A. Cell surface properties of Pseudomonas stutzeri in the process of diesel oil biodegradation. Biotechnology Letters, 2012, 34(5): 857–862

    CAS  Google Scholar 

  35. Willumsen P A, Karlson U, Pritchard P H. Response of fluoranthene-degrading bacteria to surfactants. Applied Microbiology and Biotechnology, 1998, 50(4): 475–483

    CAS  Google Scholar 

  36. Wong JWC, Fang M, Zhao Z Y, Xing B S. Effect of surfactants on solubilization and degradation of phenanthrene under thermophilic conditions. Journal of Environmental Quality, 2004, 33(6): 2015–2025

    CAS  Google Scholar 

  37. Kaczorek E, Urbanowicz M, Olszanowski A. The influence of surfactants on cell surface properties of Aeromonas hydrophila during diesel oil biodegradation. Colloids Surface B-Biointerfaces, 2010, 81(1): 363–368

    CAS  Google Scholar 

  38. Seo Y, Bishop P L. Influence of nonionic surfactant on attached biofilm formation and phenanthrene bioavailability during simulated surfactant enhanced bioremediation. Environmental Science & Technology, 2007, 41(20): 7107–7113

    CAS  Google Scholar 

  39. Fuchedzhieva N, Karakashev D, Angelidaki I. Anaerobic biodegradation of fluoranthene under methanogenic conditions in presence of surface-active compounds. Journal of Hazardous Materials, 2008, 153(1–2): 123–127

    CAS  Google Scholar 

  40. Hadibarata T, Tachibana S. Characterization of phenanthrene degradation by strain Polyporus sp.S133. Journal of Environmental Science-China, 2010, 22(1): 142–149

    CAS  Google Scholar 

  41. McGuire T, Hughes J B. Effects of surfactants on the dechlorination of chlorinated ethenes. Environmental Toxicology and Chemistry, 2003, 22(11): 2630–2638

    CAS  Google Scholar 

  42. Mata-Sandoval J C, Karns J, Torrents A. Influence of rhamnolipids and Triton X-100 on the biodegradation of three pesticides in aqueous phase and soil slurries. Journal of Agricultural and Food Chemistry, 2001, 49(7): 3296–3303

    CAS  Google Scholar 

  43. Górna H, Lawniczak L, Zgola-Grzeskowiak A, Kaczorek E. Differences and dynamic changes in the cell surface properties of three Pseudomonas aeruginosa strains isolated from petroleum-polluted soil as a response to various carbon sources and the external addition of rhamnolipids. Bioresource Technology, 2011, 102(3): 3028–3033

    Google Scholar 

  44. Obuekwe C O, Al-Jadi Z K, Al-Saleh E S. Sequential hydrophobic partitioning of cells of Pseudomonas aeruginosa gives rise to variants of increasing cell surface hydrophobicity. FEMS Microbiology Letters, 2007, 270(2): 214–219

    CAS  Google Scholar 

  45. Mohanty S, Mukherji S. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons. Applied Microbiology and Biotechnology, 2012, 94(1): 193–204

    CAS  Google Scholar 

  46. Gillelan H E, Stinnett J D, Roth I L, Eagon R G. Freeze-etch study of Pseudomonas aeruginosa-Localization within cell wall of an ethylenediaminetraacetate-extractable component. Journal of Bacteriology, 1973, 113(1): 417–432

    Google Scholar 

  47. Wick L, Pasche N, Bernasconi S, Pelz O, Harms H. Characterization of multiple-substrate utilization by anthracene-degrading Mycobacterium frederiksbergense LB501T. Applied and Environmental Microbiology, 2003, 69(10): 6133–6142

    CAS  Google Scholar 

  48. Das K, Mukherjee A. Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability. Journal of Applied Microbiology, 2007, 102(1): 195–203

    CAS  Google Scholar 

  49. Whyte L, Slagman S, Pietrantonio F, Bourbonniere L, Koval S, Lawrence J, Inniss W, Greer C. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Applied and Environmental Microbiology, 1999, 65: 2961–2968

    CAS  Google Scholar 

  50. Jana T, Srivastava A, Csery K, Arora D. Influence of growth and environmental conditions on cell surface hydrophobicity of Pseudomonas fluorescens in non-specific adhesion. Cananian Journal of Microbiology, 2000, 46(1): 28–37

    CAS  Google Scholar 

  51. Zhang Y, Miller R. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Applied and Environmental Microbiology, 1994, 60: 2101–2116

    CAS  Google Scholar 

  52. Zhong H, Zeng G, Yuan X, Fu H, Huang G, Ren F. Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Applied Microbiology and Biotechnology, 2007, 77(2): 447–455

    CAS  Google Scholar 

  53. Noda Y, Kanemasa Y. Determination of hydrophobicity on bacterial surfaces by nonionic surfactants. Journal of Bacteriology, 1986, 167(3): 1016–1019

    CAS  Google Scholar 

  54. Berset J D, Holzer R. Organic micropollutants in Swiss agriculture-Distribution of polynuclear aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in soil, liquid manure, sewage sludge and compost smaples: a comparative study. International Journal of Environmental Analytical Chemistry, 1995, 59(2–4): 145–165

    CAS  Google Scholar 

  55. Neu T R. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiological Reviews, 1996, 60(1): 151

    CAS  Google Scholar 

  56. Razatos A, Ong Y L, Sharma M M, Georgiou G. Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proceedings of National Academy of Sciences of the United States of America, 1998, 95(19): 11059–11064

    CAS  Google Scholar 

  57. Caroff M, Karibian D. Structure of bacterial lipopolysaccharides. Carbohydrate Research, 2003, 338(23): 2431–2447

    CAS  Google Scholar 

  58. Alexander C, Rietschel E T. Bacterial lipopolysaccharides and innate immunity. Journal of Endotoxin Research, 2001, 7(3): 167–202

    CAS  Google Scholar 

  59. Leive L. The barrier function of the Gram-negative envelope. Annals of New York Academy of Sciences, 1974, 235(1 Mode of Actio): 109–129

    CAS  Google Scholar 

  60. Hazen K C, Lay J G, Hazen B W, Fu R C, Murthy S. Partial biochemical characterization of cel surface hydrophobicity and hydrophilicity of Candida albicans. Infection and Immunity, 1990, 58(11): 3469–3476

    CAS  Google Scholar 

  61. Bos M P, Tefsen B, Geurtsen J, Tommassen J. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proceedings of National Academy of Sciences of the United States of America, 2004, 101(25): 9417–9422

    CAS  Google Scholar 

  62. Mozes N, Rouxhet P G. Methods for measuring hydrophobicity of microorganisms. Journal of Microbiological Methods, 1987, 6(2): 99–112

    Google Scholar 

  63. Busscher H J, Vandebeltgritter B, Vandermei H C. Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity. 1. Zeta potentials of hdyrocarbon droplets. Colloids and Surface B-Biointerfaces, 1995, 5(3–4): 111–116

    CAS  Google Scholar 

  64. Geertsemadoornbusch G I, Vandermei H C, Busscher H J. Microbial cell surface hydrophobicity—The involvement of electrostatic interactions in microbial adhesion to hydrocarbons (MATH). Journal of Microbiological Methods, 1993, 18(1): 61–68

    Google Scholar 

  65. Makin S A, Beveridge T J. The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology-UK, 1996, 142(2): 299–307

    CAS  Google Scholar 

  66. Palomar J, Leranoz A M, Vinas M. Serratia marcescens adherence—The effect of O-antigen presence. Microbios, 1995, 81(327): 107–113

    CAS  Google Scholar 

  67. Williams P, Lambert P A, Haigh C G, Brown M R W. The influence of the O-antigens and k-antigens of Klebsiella aerogenes on surface hydrophobicitiy and susceptibility to phagocytosis and antimicrobial agents. Journal of Medical Microbiology, 1986, 21(2): 125–132

    CAS  Google Scholar 

  68. Hua Z Z, Chen J, Lun S Y, Wang X R. Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Research, 2003, 37(17): 4143–4150

    CAS  Google Scholar 

  69. Aronson D, Citra M, Shuler K, Printup H, Howard P H. Aerobic Biodegradation of Organic Chemicals in Environmental Media: a Summary of Field and Laboratory Studies. New York: EPA Reports, Office of Reserch and Development Athens GA 30605, 1999

    Google Scholar 

  70. Bressleer D C, Gray M R. Transport and reaction processes in bioremediation of organic contaminants. 1. Review of bacterial degradation and transport. International Journal of Chemical Reactor Engineering, 2003, 1(R3): 1–16

    Google Scholar 

  71. Carrière B, Legrimellec C. Effects of benzyl alcohol on enzyme activities and D-glucose transport in kidney brush border membranes. Biochimica Et Biophysica Acta-Biomembranes, 1986, 857(2): 131–138

    Google Scholar 

  72. Green D E, Fry M, Blondin G A. Phophlipids as the molecular instruments of ion and solute transport in biological membranes. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77(1): 257–261

    CAS  Google Scholar 

  73. Marcelino J, Lima J, Reis S, Matos C. Assessing the effects of surfactants on the physical properties of liposome membranes. Chemstry and Physics of Lipids, 2007, 146(2): 94–103

    CAS  Google Scholar 

  74. Gregory G. Liposome Technology. New York: CRC Press, 2007

    Google Scholar 

  75. Bombelli C, Giansanti L, Luciani P, Mancini G. Gemini surfactant based carriers in gene and drug delivery. Current Medicinal Chemstry, 2009, 16(2): 171–183

    CAS  Google Scholar 

  76. Van Hamme J D, Singh A, Ward O P. Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnology Advances, 2006, 24(6): 604–620

    Google Scholar 

  77. Helenius A, Simons K. Solubilization of membranes by detergents. Biochimica Et Biophysica Acta-Biomembranes, 1975, 415(1): 2979

    Google Scholar 

  78. Shoji Y, Igarashi T, Nomura H, Eitoku T, Katayama K. Liposome solubilization induced by surfactant molecules in a microchip. Analytical Sciences, 2012, 28(4): 339–343

    CAS  Google Scholar 

  79. Sujatha J, Mishra A K. Effect of ionic and neutral surfactants on the properties of phospholipid vesicles: Investigation using fluorescent probes. Journal of Photochemistry and Photobiology a-Chemistry, 1997, 104(1–3): 173–178

    CAS  Google Scholar 

  80. Asther M, Corrieu G, Drapron R, Odier E. Effect of Tween 80 and oleic acid on ligninase production by Phanerochaete chrysosporium INA-12. Enzyme and Microbial Technology, 1987, 9(4): 245–249

    CAS  Google Scholar 

  81. Guerin W F, Jones G E. Mineralization of phenanthrene by a Mycobacterium sp. Applied and Environmental Microbiology, 1988, 54(4): 937–944

    CAS  Google Scholar 

  82. Van der werf M J; Hartmans S, Vandentweel W J J. Permeabilization and lysis of Pseudomonas pseudoalcaligenes cells by Triton X-100 for efficient production of D-malate. Applied Microbiology and Biotechnology, 1995, 43(4): 590–594

    Google Scholar 

  83. Nazari M, Kurdi M, Heerklotz H. Classifying surfactants with respect to their effect on lipid membrane order. Biophysical Journal, 2012, 102(3): 498–506

    CAS  Google Scholar 

  84. Schnaitm C. Solubilization of cytoplasmic membrane of Escherichia coli by Triton X-100. Journal of Bacteriology, 1971, 108(1): 545

    Google Scholar 

  85. Hildebrand A, Beyer K, Neubert R, Garidel P, Blume A. Temperature dependence of the interaction of cholate and deoxycholate with fluid model membranes and their solubilization into mixed micelles. Colloids Surface B-Biointerfaces, 2003, 32(4): 335–351

    CAS  Google Scholar 

  86. Keller S, Tsamaloukas A, Heerklotz H. A quantitative model describing the selective solubilization of membrane domains. Journal of American Chemical Society, 2005, 127(32): 11469–11476

    Google Scholar 

  87. Hengstenberg W. Solubilization of the membrane bound lactose specific component of the staphylococcal pep dependant phosphotransferase system. FEBS Letters, 1970, 8(5): 277–280

    CAS  Google Scholar 

  88. Umbreit J N. Relation of detergent HLB number to solubilization and stabilization of D-alanine carboxypeptidase from bacillus subtilis membranes. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(10): 2997–3001

    CAS  Google Scholar 

  89. Karlsson A, Parales J V, Parales R E, Gibson D T, Eklund H, Ramaswamy S. Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science, 2003, 299(5609): 1039–1042

    CAS  Google Scholar 

  90. Poulos T L. Cytochrome P450. Current Opinion in Structural Biology, 1995, 5(6): 767–774

    CAS  Google Scholar 

  91. Schlichting I, Berendzen J, Chu K, Stock AM, Maves S A, Benson D E, Sweet B M, Ringe D, Petsko G A, Sligar S G. The catalytic pathway of cytochrome P450cam at atomic resolution. Science, 2000, 287(5458): 1615–1622

    CAS  Google Scholar 

  92. Rosenzweig A C, Frederick C A, Lippard S J, Nordlund P. Crystal structure of a bacterial non-heme iron hydroxylase that catalyzes the biological oxidation of methane. Nature, 1993, 366(6455): 537–543

    CAS  Google Scholar 

  93. Spain J C. Biodegradation of nitroaromatic compounds. Annual Review of Microbiology, 1995, 49(1): 523–555

    CAS  Google Scholar 

  94. Wallar B J, Lipscomb J D. Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chemical Review, 1996, 96(7): 2625–2657

    CAS  Google Scholar 

  95. Gibson D T, Parales R E. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Current Opinion in Biotechnology, 2000, 11(3): 236–243

    CAS  Google Scholar 

  96. Carredano E, Karlsson A, Kauppi B, Choudhury D, Parales R E, Parales J V, Lee K, Gibson D T, Eklund H, Ramaswamy S. Substrate binding site of naphthalene 1,2-dioxygenase: Functional implications of indole binding. Journal of Molecular Biology, 2000, 296(2): 701–712

    CAS  Google Scholar 

  97. Cerniglia C E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 1992, 3(2–3): 351–368

    CAS  Google Scholar 

  98. Baboshin M, Akimov V, Baskunov B, Born T L, Khan S U, Golovleva L. Conversion of polycyclic aromatic hydrocarbons by Sphingomonas sp. VKM B-2434. Biodegradation, 2008, 19(4): 567–576

    CAS  Google Scholar 

  99. Dean-Ross D, Moody J D, Freeman J P, Doerge D R, Cerniglia C E. Metabolism of anthracene by a Rhodococcus species. FEMS Microbiological Letters, 2001, 204(1): 205–211

    CAS  Google Scholar 

  100. Kauppi B, Lee K, Carredano E, Parales R E, Gibson D T, Eklund H, Ramaswamy S. Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure, 1998, 6(5): 571–586

    CAS  Google Scholar 

  101. Cho J, Jeon S, Wilson S A, Liu L V, Kang E A, Braymer J J, Lim M H, Hedman B, Hodgson K O, Valentine J S, Solomon E I, Nam W. Structure and reactivity of a mononuclear non-haem iron(III)-peroxo complex. Nature, 2011, 478(7370): 502–505

    CAS  Google Scholar 

  102. Volkering F, Breure A M, Rulkens W H. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation, 1997, 8(6): 401–417

    CAS  Google Scholar 

  103. Schilling M, Haetzelt F, Schwab W, Schrader J. Impact of surfactants on solubilization and activity of the carotenoid cleavage dioxygenase, AtCCD1, in an aqueous micellar reaction system. Biotechnological Letters, 2008, 30(4): 701–706

    CAS  Google Scholar 

  104. Su J H, Xu J H, Wang Z L. Improving enzymatic production of ginsenoside Rh-2 from Rg(3) by using nonionic surfactant. Applied Biochemistry and Biotechnology, 2010, 160(4): 1116–1123

    CAS  Google Scholar 

  105. Louvado A, Coelho F, Domingues P, Santos A L, Gomes N C M, Almeida A, Cunha A. Isolation of surfactant-resistant pseudomonads from the estuarine surface microlayer. Journal of Microbiology and Biotechnology, 2012, 22(3): 283–291

    CAS  Google Scholar 

  106. Nacke C, Schrader J. Micelle based delivery of carotenoid substrates for enzymatic conversion in aqueous media. Journal of Molecular Catalysis B-Enzymatic, 2012, 77: 67–73

    CAS  Google Scholar 

  107. Nguyen N T, Hsieh H C, Lin Y W, Huang S L. Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes. Bioresource Technology, 2011, 102(5): 4232–4240

    CAS  Google Scholar 

  108. Marlowe E M, Wang J M, Pepper I L, Maier R M. Application of a reverse transcription-PCR assay to monitor regulation of the catabolic nahAc gene during phenanthrene degradation. Biodegradation, 2002, 13(4): 251–260

    CAS  Google Scholar 

  109. Goncalves A M D, Aires-Barros M R, Cabral J M S. Interaction of an anionic surfactant with a recombinant cutinase from Fusarium solani pisi: a spectroscopic study. Enzyme and Microbial Technology, 2003, 32(7): 868–879

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhong Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Zhu, L. Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in biodegradation process. Front. Environ. Sci. Eng. 8, 305–315 (2014). https://doi.org/10.1007/s11783-014-0647-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-014-0647-z

Keywords

Navigation