Skip to main content
Log in

Reuse of heavy metal-accumulating Cynondon dactylon in remediation of water contaminated by heavy metals

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Phytoremediation technology is regarded as a simple and efficient way to remove heavy metals from contaminated soil. A reasonable disposal of metal hyperaccumulators is always a major issue in waste reuse and resource-saving. The heavy metal-accumulating Cynondon dactylon (L.) was investigated where heavy metals were desorbed by a facile acid-treatment. The result indicated that more than 90% of heavy metals (Zn, Pb and Cu) was extracted from Cynondon dactylon with 0.2 mmol ·L−1 HCl. The plant residue was used to adsorb heavy metals ions. The adsorption fitted the Langmuir isotherm model with the saturation adsorption capacity of 9.5 mg ·g−1 Zn2+, 36.2 mg·g−1 Pb2+ and 12.9 mg·g−1 Cu2+, and the surface complexation and the backfilling of heavy metal-imprinting cavities existed simultaneously during the adsorption. The treatment of wastewaters indicated that the plant residue exhibited a high removal rate of 97% for Cu. Also, the material could be recycled. The method offers a new disposal approach for heavy metal hyper-accumulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chehregani A, Noori M, Yazdi H L. Phytoremediation of heavymetal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicology and Environmental Safety, 2009, 72(5): 1349–1353

    Article  CAS  Google Scholar 

  2. Ali H, Khan E, Sajad M A. Phytoremediation of heavy metalsconcepts and applications. Chemosphere, 2013, 91(7): 869–881

    Article  CAS  Google Scholar 

  3. Lado L R, Hengl T, Reuter H I. Heavy metals in European soils: a geostatistical analysis of the FOREGS Geochemical database. Geoderma, 2008, 148(2): 189–199

    Article  CAS  Google Scholar 

  4. Shah K, Dubey R S. A 18 kDa cadmium inducible protein complex: its isolation and characterization from rice (Oryza sativa L.) seedlings. Plant Physiology, 1998, 152(4-5): 448–454

    Article  CAS  Google Scholar 

  5. Agrawal V, Sharma K. Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysentrica. Biologia Plantarum, 2006, 50(2): 307–310

    Article  CAS  Google Scholar 

  6. Cheng S P. Heavy metal pollution in China: origin, pattern and control-a state-of-the-art report with special reference to literature published in Chinese journals. Environmental Science and Pollution Research International, 2003, 10(3): 192–198

    Article  CAS  Google Scholar 

  7. Wang Q R, Cui Y S, Liu X M, Dong Y T, Christie P. Soil contamination and plant uptake of heavy metals at polluted sites in China. Journal of Environment Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 2003, 38: 823–838

    Article  Google Scholar 

  8. Wu S, Xia X H, Lin C Y, Chen X, Zhou C H. Levels of arsenic and heavy metals in the rural soils of Beijing and their changes over the last two decades (1985–2008). Journal of Hazardous Materials, 2010, 179(1–3): 860–868

    Article  CAS  Google Scholar 

  9. Chen Y Y, Wang J, Gao W, Sun X J, Xu S Y. Comprehensive analysis of heavy metals in soils from Baoshan District, Shanghai: a heavily industrialized area in China. Environmental Earth Sciences, 2012, 67(8): 2331–2343

    Article  CAS  Google Scholar 

  10. Cui Z A, Qiao S Y, Bao Z Y, Wu N Y. Contamination and distribution of heavy metals in urban and suburban soils in Zhangzhou City, Fujian, China. Environmental Earth Sciences, 2011, 64(6): 1607–1615

    Article  CAS  Google Scholar 

  11. Lu C A, Zhang J F, Jiang HM, Yang J C, Zhang J T, Wang J Z, Shan H X. Assessment of soil contamination with Cd, Pb and Zn and source identification in the area around the Huludao Zinc Plant. Journal of Hazardous Materials, 2010, 182(1–3): 743–748

    Article  CAS  Google Scholar 

  12. Shi G T, Chen Z L, Xu S Y, Zhang J, Wang L, Bi C J, Teng J Y. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environmental Pollution, 2008, 156(2): 251–260

    Article  CAS  Google Scholar 

  13. Argun M E, Dursun S. A new approach to modification of natural adsorbent for heavy metal adsorption. Bioresource Technology, 2008, 99(7): 2516–2527

    Article  CAS  Google Scholar 

  14. Meagher R B. Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology, 2000, 3(2): 153–162

    Article  CAS  Google Scholar 

  15. Gisbert C, Ros R, de Haro A, Walker D J, Pilar Bernal M, Serrano R, Navarro-Aviñó J. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochemical and Biophysical Research Communications, 2003, 303(2): 440–445

    Article  CAS  Google Scholar 

  16. Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: How and why do they do it? and What makes them so interesting? Plant Science, 2011, 180(2): 169–181

    Article  CAS  Google Scholar 

  17. Baker A J M, McGrath S P, Sidoli C M D, Reeves R D. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling, 1994, 11(1–4): 41–49

    Article  Google Scholar 

  18. Chen T B, Wei C Y. Arsenic hyperaccumulator in some plant species in South China. In: Proceedings of International Conference on Soil Remediation. Hangzhou China, 2000, 194-195

  19. Broadhurst C L, Chaney R L, Angle J S, Erbe E F, Maugel T K. Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale. Plant and Soil, 2004, 265(1–2): 225–242

    Article  CAS  Google Scholar 

  20. Yang X E, Long X X, Ye H B, He Z L, Calvert D V, Stoffella P J. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil, 2004, 259(1/2): 181–189

    Article  CAS  Google Scholar 

  21. Tang Y T, Qiu R L, Zeng XW, Ying R R, Yu F M, Zhou X Y. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environmental and Experimental Botany, 2009, 66(1): 126–134

    Article  CAS  Google Scholar 

  22. Brown S L, Chaney R L, Angle J S, Baker A J M. Zinc and cadmium uptake by hyperaccumulator Thlaspi-caerulescens and metaltolerant Silene-vulgaris grown on sludge-amended soils. Environmental Science and Technology, 1995, 29(6): 1581–1585

    Article  CAS  Google Scholar 

  23. Krämer U. Phytoremediation: novel approaches to cleaning up polluted soils. Current Opinion in Biotechnology, 2005, 16(2): 133–141

    Article  Google Scholar 

  24. Salt D E, Prince R C, Baker A J M, Raskin I, Pickering I J. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environmental Science and Technology, 1999, 33(5): 713–717

    Article  CAS  Google Scholar 

  25. Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 2001, 212(4): 475–486

    Article  CAS  Google Scholar 

  26. McGrath S P, Zhao F J. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 2003, 14(3): 277–282

    Article  CAS  Google Scholar 

  27. Verbruggen N, Hermans C, Schat H. Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 2009, 181(4): 759–776

    Article  CAS  Google Scholar 

  28. Karthik D, Ravikumar S. A study on the protective effect of Cynodon dactylon leaves extract in diabetic rats. Biomedical and Environmental Sciences, 2011, 24(2): 190–199

    CAS  Google Scholar 

  29. Garbisu C, Alkorta I. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 2001, 77(3): 229–236

    Article  CAS  Google Scholar 

  30. Ajmal M, Ali Khan Rao R, Anwar S, Ahmad J, Ahmad R. Adsorption studies on rice husk: removal and recovery of Cd (II) from wastewater. Bioresource Technology, 2003, 86(2): 147–149

    Article  CAS  Google Scholar 

  31. Farooq U, Kozinski J A, Khan M A, Athar M. Biosorption of heavy metal ions using wheat based biosorbents-a review of the recent literature. Bioresource Technology, 2010, 101(14): 5043–5053

    Article  CAS  Google Scholar 

  32. Zhao X T, Zeng T, Li X Y, Hu Z J, Gao H W, Xie Z. Modeling and mechanism of the adsorption of copper ion onto natural bamboo sawdust. Carbohydrate Polymers, 2012, 89(1): 185–192

    Article  CAS  Google Scholar 

  33. Al-Degs Y S, El-Barghouthi M I, Issa A A, Khraisheh M A, Walker G M. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies. Water Research, 2006, 40(14): 2645–2658

    Article  CAS  Google Scholar 

  34. Chaney R L, Malik M, Li Y M, Brown S L, Brewer E P, Angle J S, Baker A J M. Phytoremediation of soil metals. Current Opinion in Biotechnology, 1997, 8(3): 279–284

    Article  CAS  Google Scholar 

  35. Matheickal J T, Yu Q M. Biosorption of lead (II) and copper (II) from aqueous solutions by pre-treated biomass f Australian marine algae. Bioresource Technology, 1999, 69(3): 223–229

    Article  CAS  Google Scholar 

  36. Shukla S R, Pai R S. Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres. Bioresource Technology, 2005, 96(13): 1430–1438

    Article  CAS  Google Scholar 

  37. Wan Ngah W S, Hanafiah M A K M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresource Technology, 2008, 99(10): 3935–3948

    Article  CAS  Google Scholar 

  38. Fones H, Davis C A R, Rico A, Fang F, Smith J A C, Preston G M. Metal hyperaccumulation armors plants against disease. PLoS Pathogens, 2010, 6(9): e1001093

    Article  Google Scholar 

  39. Nie F H. New comprehensions of hyperaccumulator. Ecologcal Environment, 2005, 14(1): 136–138 (In chinese)

    Google Scholar 

  40. Parida S K, Dash S, Patel S, Mishra B K. Adsorption of organic molecules on silica surface. Advances in Colloid and Interface Science, 2006, 121(1–3): 77–110

    Article  CAS  Google Scholar 

  41. Gao H W, Ma D D, Xu G. Medicinal plant acid-treatment for a healthier herb tea and recycling of the spent herb residue. RSC Advances, 2012, 2(14): 5983–5989

    Article  CAS  Google Scholar 

  42. Saygideger S, Gulnaz O, Istifli E S, Yucel N. Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: effect of physicochemical environment. Journal of Hazardous Materials, 2005, 126(1–3): 96–104

    Article  CAS  Google Scholar 

  43. Radetić M M, Jocić D M, Jovančić P M, Petrović Z L J, Thomas H F. Recycled wool-based nonwoven material as an oil sorbent. Environmental Science and Technology, 2003, 37(5): 1008–1012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwen Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, D., Gao, H. Reuse of heavy metal-accumulating Cynondon dactylon in remediation of water contaminated by heavy metals. Front. Environ. Sci. Eng. 8, 952–959 (2014). https://doi.org/10.1007/s11783-013-0619-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-013-0619-8

Keywords

Navigation