Skip to main content
Log in

Immobilized Lentinus edodes residue as absorbent for the enhancement of cadmium adsorption performance

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

To investigate the potential use of Lentinus edodes (L. edodes) residue for Cd2+ adsorption, poly alcohol Na alginate (PVA) was applied to immobilize it. The parameters including contact time, pH, adsorbent dosages, and coexisting metal ions were studied. The suitable pH for immobilized L. edodes was 4–7 wider than that for raw L. edodes (pH 6–7). In the presence of Pb2+ concentration varying from 0 to 30 mg·L−1, the Cd2+ adsorption ratios declined by 6.71% and 47.45% for immobilized and raw L. edodes, respectively. While, with the coexisting ion Cu2+ concentration varied from 0 to 30 mg·L−1, the Cd2+ adsorption ratios declined by 12.97% and 50.56% for immobilized and raw L. edodes, respectively. The Cd2+ adsorption isotherms in single-metal and dual-metal solutions were analyzed by using Langmuir, Freundlich, and Dubinin-Radushkevich models. The Cd2+ adsorption capacities (q m) in single-metal solution were 6.448 mg·L−1 and 2.832 mg·L−1 for immobilized and raw L. edodes, respectively. The q m of immobilized L. edodes were 1.850 mg Cd·g−1 in Cd2+ + Pb2+ solution and 3.961 mg Cd·g−1 in Cd2+ + Cu2+ solution, respectively. The Cd2+ adsorption processes subjected to both adsorbents follow pseudo-second-order model. Mechanism study showed the functional group of L. edodes was -OH, -NH, -CO, and PVA played an important role in metal adsorbing. Mining wastewater treatment test showed that PVA-SA-immobilized L. edodes was effective in mixed pollutant treatment even for wastewater containing metal ions in very low concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Üçer A, Uyanik A Ş F, Aygün Ş F. Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Separation and Purification Technology, 2006, 47(3): 113–118

    Article  Google Scholar 

  2. Netzer A, Hughes D E. Adsorption of copper, lead and cobalt by activated carbon. Water Research, 1984, 18(8): 927–933

    Article  CAS  Google Scholar 

  3. Karabulut S, Karabakan A, Denizli A, Yurum Y Y. Batch removal of copper(II) and zinc(II) from aqueous solutions with low-rank Turkish coals. Separation and Purification Technology, 2000, 18(3): 177–184

    Article  CAS  Google Scholar 

  4. Brown P A, Gill S A, Allen S J. Metal removal from wastewater using peat. Water Research, 2000, 34(16): 3907–3916

    Article  CAS  Google Scholar 

  5. Kandah MI. Zinc and cadmium adsorption on low-grade phosphate. Separation and Purification Technology, 2004, 35(1): 61–70

    Article  CAS  Google Scholar 

  6. Sternberg S P, Claussen K. Lead and nickel removal using Microspora and Lemna minor. Bioresource Technology, 2003, 89(1): 41–48

    Article  Google Scholar 

  7. Bailey S E, Olin T J, Bricha R M, Adrian D D. A review of potentially low-cost sorbents for heavy metals. Water Research, 1999, 33(11): 2469–2479

    Article  CAS  Google Scholar 

  8. Romero-González M E, Williams C J, Gardiner P H E, Gurman S J, Habesh S. Spectroscopic studies of the biosorption of gold(III) by dealginated seaweed waste. Environmental Science & Technology, 2003, 37(18): 4163–4169

    Article  Google Scholar 

  9. Xu J M, Zhang P. Development of immobilized cells technology in the treatment of water containing heavy metals. Environmental Science and Management, 2005, 30(6): 84–85 (in Chinese)

    Google Scholar 

  10. Schiewer S, Balaria A. Biosorption of Pb2+ by original and protonated citrus peels: equilibrium, kinetics, and mechanism. Chemical Engineering Journal, 2009, 146(2): 211–219

    Article  CAS  Google Scholar 

  11. Aker S T, Gorgulu A, Anilan B, Kaynak Z, Aker T. Investigation of the biosorption characteristics of lead(II) ions onto Symphoricarpus albus: batch and dynamic flow studies. Journal of Hazardous Materials, 2009, 165(1/2/3): 126–133

    Article  Google Scholar 

  12. Manning B A, Goldberg S. Adsorption and stability of arsenic(III) at the clay mineral-water interface. Environmental Science & Technology, 1997, 31(7): 2005–2011

    Article  CAS  Google Scholar 

  13. Ahluwalia S S, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 2007, 98(12): 2243–2257

    Article  CAS  Google Scholar 

  14. Arica M Y, Bayramoglu G. Cr(VI) biosorption from aqueous solutions using raw and immobilized biomass of Lentinus sajorcaju: preparation and kinetic characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 253(1–3): 203–211

    Article  CAS  Google Scholar 

  15. Baldrian P. Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 2003, 32(1): 78–91

    Article  CAS  Google Scholar 

  16. Wang J L. Bio-immobilized technology and water pollution control. Beijing: Science Press, 2002

    Google Scholar 

  17. Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals, 2002, 15(4): 377–390

    Article  CAS  Google Scholar 

  18. de-Bashan L E, Bashan Y. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 2010, 101(6): 1611–1627

    Article  CAS  Google Scholar 

  19. Sheng P X, Kin W H, Ting Y P, Chen J P. Biosorption of copper by immobilized marine algal biomass. Chemical Engineering Journal, 2008, 136(2–3): 156–163

    Article  CAS  Google Scholar 

  20. Khoo K M, Ting Y P. Biosorption of gold by immobilized fungal biomass. Biochemical Engineering Journal, 2001, 8(1): 51–59

    Article  CAS  Google Scholar 

  21. Robinson P K, Reeve J O, Goulding K H. Kinetics of phosphorus of phosphorus uptake by immobilized Chlorella. Biotechnology Letters, 1988, 10(1): 17–20

    Article  CAS  Google Scholar 

  22. Iqbal M, Edyveane R G J. Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Minerals Engineering, 2004, 17(2): 217–223

    Article  CAS  Google Scholar 

  23. Bayramoğlu G, Bektaş S, Arica M Y. Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. Journal of Hazardous Materials, 2003, 101(3): 285–300

    Article  Google Scholar 

  24. Wilkinson S C, Goulding K H, Robinson P K. Mercury accumulation and volatilization in immobilized algal cell systems. Biotechnology Letters, 1989, 11(12): 861–864

    Article  CAS  Google Scholar 

  25. Gabriel J J, Baldrian P, Hladíková K, Háková M. Copper sorption by native and modified pellets of wood-rotting basidiomycetes. Letters in Applied Microbiology, 2001, 32(3): 194–198

    Article  CAS  Google Scholar 

  26. Pan X L, Wang J L, Zhang D Y. Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process Biochemistry (Barking, London, England), 2005, 40(8): 2799–2803

    CAS  Google Scholar 

  27. Wang J H, Tong Z F, Zeng A G. The application of immobilized cell in synthesis of adenosine triphosphate. Bioresource Technology, 2004, 31(3): 141–145 (in Chinese)

    CAS  Google Scholar 

  28. Chen G Q, Zeng G M, Tang L, Du C, Jiang X Y, Huang G H, Liu H L, Shen G L. Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresource Technology, 2008, 99(15): 7034–7040

    Article  CAS  Google Scholar 

  29. Galli E, di Mario F, Lorenzoni P, Rapanà P, Angelini R. Copper biosorption by Auricularia polytricha. Letters in Applied Microbiology, 2003, 37(2): 133–137

    Article  CAS  Google Scholar 

  30. Kappoor A, Viraraghavan T. Fungal biosorption an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresource Technology, 1995, 53(3): 195–206

    Google Scholar 

  31. Liang S, Guo X Y, Feng N C, Tian Q H. Adsorption of Cu2+ and Cd2+ from aqueous solution by mercapto-acetic acid modified orange peel. Colloids and Surfaces. B, Biointerfaces, 2009, 73(1): 10–14

    Article  CAS  Google Scholar 

  32. Zhang D, Gao J W, Ma P. Effect of competitive interference on the metal ions biosorption by Auricularia polytricha mycelial. Ecology & Environment, 2008, 17(6): 1822–1827 (in Chinese)

    Google Scholar 

  33. Luna A S, Costa A L H, da Costa A C, Henriques C A. Competitive biosorption of cadmium(II) and zinc(II) ions from binary systems by Sargassum filipendula. Bioresource Technology, 2010, 101(14): 5104–5111

    Article  CAS  Google Scholar 

  34. Şengil I A, Özacar M. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. Journal of Hazardous Materials, 2009, 166(2–3): 1488–1494

    Google Scholar 

  35. Özacar M, Şengil A, Türkmenler H. Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chemical Engineering Journal, 2008, 143(1–3): 32–42

    Article  Google Scholar 

  36. Arıca M Y, Kaçar Y, Genç Ö. Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresource Technology, 2001, 80(2): 121–129

    Article  Google Scholar 

  37. Aksu Z. Equilibrium and kinetic modelling of cadmium (II) biosorption by C. bulgaris in a batch system: effect of temperature. Separation and Purification Technology, 2001, 21(3): 285–294

    Article  CAS  Google Scholar 

  38. Kargi F, Cikla S. Biosorption of zinc(II) ions onto powdered waste sludge (PWS): kinetics and isotherms. Enzyme and Microbial Technology, 2006, 38(5): 705–710

    Article  CAS  Google Scholar 

  39. Padmavathy V, Dhingra S C. Kinetics of biosorption of cadmium on Baker’s yeast. Bioresource Technology, 2003, 89(3): 281–287

    Article  Google Scholar 

  40. Wang X S, Hu H Q, Wang J, Sun C. The equilibrium and dynamics of Cu2+ biosorption by Na-type mordenite. Science and Technology Review, 2006, 24(11): 31–36 (in Chinese)

    Google Scholar 

  41. El-Naas M H, Al-Rub F A, Marzouqi A. Effect of competitive interference on the biosorption of lead(II) by Chlorella vulgaris. Chemical Engineering and Processing: Process intensification, 2007, 46(12): 1391–1399

    Article  CAS  Google Scholar 

  42. Guo P, Gao H L, Chen P J. The rule of the adsorption to Cd2+ by immobilized bacteria. Journal of Jilin University, 2007, 37(2): 375–379 (in Chinese)

    CAS  Google Scholar 

  43. Ferraz A L, Teixeira J A. The use of flocculating brewer’s yeast for Cr(III) and Pb(II) removal from residual wastewaters. Bioprocess Engineering, 1999, 21(5): 431–437

    Article  CAS  Google Scholar 

  44. Chen G Q, Zeng G M, Tang L, Du C Y, Jiang X Y, Huang G H, Liu H L, Shen G L. Bioaccumulation of chromium from tannery wastewater: an approach for chrome recovery and reuse. Bioresource Technology, 2008, 99(15): 7034–7040

    Article  CAS  Google Scholar 

  45. Anayurt T R A, Sari A, Yuzen M. Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chemical Engineering Journal, 2009, 151(1–3): 255–261

    Article  CAS  Google Scholar 

  46. Jia R, Pei M J, Shi Y, Huang R D, Xiao Y Z. Studies on adsorption of Cu2+ by the fungus Aspergillus sp. China Environmental Science, 2003, 23(3): 263–266 (in Chinese)

    CAS  Google Scholar 

  47. Israilides C, Kletsas D, Arapoglou D, Philippoussis A, Pratsinis H, Ebringerová A, Hríbalová V, Harding S E. In vitro cytostatic and immunomodulatory properties of the medicinal mushroom Lentinula edodes. Phytomedicine, 2008, 15(6–7): 512–519

    Article  CAS  Google Scholar 

  48. Kellner R, Mermet JM, Otto M, Widner HM. Analytical Chemistry. New York: Wiley-Vch, 1998, 824

    Google Scholar 

  49. Akar T, Tunali S, Kiran I. Botrytics cinera as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochemical Engineering Journal, 2005, 25(3): 227–235

    Article  CAS  Google Scholar 

  50. Akar T, Tunali S. Biosorption performance of Botrytis cinerea fungal products for removal of Cd (II) and Cu(II) ions from aqueous solutions. Minerals Engineering, 2005, 18(11): 1099–1109

    Article  CAS  Google Scholar 

  51. Şanli O, Ay N, Işiklan N. Release characteristics of diclofenac sodium from poly (vinyl alcohol)/sodium alginate and poly(vinyl alcohol)-grafted-poly(acrylamide)/sodium alginate blend beads. European Journal of Pharmarnaceutics, 2007, 65(2): 204–214

    Google Scholar 

  52. Zhang Y, Kogelnig D, Morgenbesser C, Stojanovic A, Jirsa F, Lichtscheidl-Schultz I, Krachler R, Li Y, Keppler B K. Preparation and characterization of immobilized [A336][MTBA] in PVAalginate gel beads as novel solid-phase extractants for an efficient recovery of Hg (II) from aqueous solutions. Journal of Hazardous Materials, 2011, 196: 201–209

    Article  CAS  Google Scholar 

  53. Peng D B, Tian Y P. Isolation and composition analysis of a kind of extracts of antioxidant activity from Lentinus edodes. Food Research Development, 2008, 29(6): 89–63 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, P., Zhang, D. Immobilized Lentinus edodes residue as absorbent for the enhancement of cadmium adsorption performance. Front. Environ. Sci. Eng. 6, 498–508 (2012). https://doi.org/10.1007/s11783-012-0429-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-012-0429-4

Keywords

Navigation