Skip to main content
Log in

Application of quantum chemical descriptors into quantitative structure-property relationship models for prediction of the photolysis half-life of PCBs in water

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

Quantitative structure-property relationship (QSPR) models were developed for prediction of photolysis half-life (t 1/2) of polychlorinated biphenyls (PCBs) in water under ultraviolet (UV) radiation. Quantum chemical descriptors computed by the PM3 Hamiltonian software were used as independent variables. The cross-validated Q 2cum value for the optimal QSPR model is 0.966, indicating good prediction capability for lg t 1/2 values of PCBs in water. The QSPR results show that the largest negative atomic charge on a carbon atom (Q C ) and the standard heat of formation (ΔH f) have a dominant effect on t 1/2 values of PCBs. Higher Q C values or lower ΔH f values of the PCBs leads to higher lg t 1/2 values. In addition, the lg t 1/2 values of PCBs increase with the increase in the energy of the highest occupied molecular orbital values. Increasing the largest positive atomic charge on a chlorine atom and the most positive net atomic charge on a hydrogen atom in PCBs leads to the decrease of lg t 1/2 values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toyoshiba H, Walker N J, Bailer A J, Portier C J. Evaluation of toxic equivalency factors for induction of cytochromes P450 CYP1A1 and CYP1A2 enzyme activity by dioxin-like compounds. Toxicology and Applied Pharmacology, 2004, 194(2): 156–168

    Article  CAS  Google Scholar 

  2. Gray L E Jr. Xenoendocrine disrupters: laboratory studies on male reproductive effects. Toxicology Letters, 1998, 102–103(1–2): 331–335

    Article  Google Scholar 

  3. Baker V A. Endocrine disrupters—testing strategies to assess human hazard. Toxicology In Vitro, 2001, 15(4–5): 413–419

    Article  CAS  Google Scholar 

  4. Eljarrat E, Caixach J, Rivera J, de Torres M, Ginebreda A. Toxic potency assessment of non- and mono-ortho PCBs, PCDDs, PCDFs, and PAHs in northwest Mediterranean sediments (Catalonia, Spain). Environmental Science & Technology, 2001, 35(18): 3589–3594

    Article  CAS  Google Scholar 

  5. Helm P A, Bidleman T F. Current combustion-related sources contribute to polychlorinated naphthalene and dioxin-like polychlorinated biphenyl levels and profiles in air in Toronto, Canada. Environmental Science & Technology, 2003, 37(6): 1075–1082

    Article  CAS  Google Scholar 

  6. Lin P, Chang Y C, Chen C H, Yang W J, Cheng Y H, Chang LW. A comparative study on the effects of 2, 3, 7, 8, -tetrachlorodibenzo-pdioxin polychlorinated biphenyl126 and estrogen in human bronchial epithelial cells. Toxicology and Applied Pharmacology, 2004, 195(1): 83–91

    Article  CAS  Google Scholar 

  7. Niu J F, Long X X, Shi S Q. Quantitative structure-activity relationships for prediction of the toxicity of hydroxylated and quinoid PCB metabolites. Journal of Molecular Modeling, 2007, 13(1): 163–169

    Article  CAS  Google Scholar 

  8. Tian F L, Chen J W, Qiao X L, Cai X Y, Yang P, Wang Z, Wang D G. Source identification of PCDD/Fs and PCBs in pine (Cedrus deodara) needles: a case study in Dalian, China. Atmospheric Environment, 2008, 42(19): 4769–4777

    Article  CAS  Google Scholar 

  9. Iwata H, Watanabe M, Okajima Y, Tanabe S, Amano M, Miyazaki N, Petrov E A. Toxicokinetics of PCDD, PCDF, and coplanar PCB congeners in Baikal seals, Pusa sibirica: age-related accumulation, maternal transfer, and hepatic sequestration. Environmental Science & Technology, 2004, 38(13): 3505–3513

    Article  CAS  Google Scholar 

  10. Niu J F, Huang L P, Chen J W, Yu G, Schramm K W. Quantitative structure-property relationships on photolysis of PCDD/Fs adsorbed to spruce (Picea abies (L.) Karst.) needle surfaces under sunlight irradiation. Chemosphere, 2005, 58(7): 917–924

    Article  CAS  Google Scholar 

  11. Niu J F, Shen Z Y, Yang Z F, Long X X, Yu G. Quantitative structure-property relationships on photodegradation of polybrominated diphenyl ethers. Chemosphere, 2006, 64(4): 658–665

    Article  CAS  Google Scholar 

  12. Wang Y N, Chen J W, Li X H, Wang B, Cai X Y, Huang L P. Predicting rate constants of hydroxyl radical reactions with organic pollutants: Algorithm, validation, applicability domain, and mechanistic interpretation. Atmospheric Environment, 2009, 43(5): 1131–1135

    Article  CAS  Google Scholar 

  13. Yin L F, Niu J F, Shen Z Y, Chen J. Mechanism of reductive decomposition of pentachlorophenol by Ti-doped β-Bi2O3 under visible light irradiation. Environmental Science & Technology, 2010, 44(14): 5581–5586

    Article  CAS  Google Scholar 

  14. Yin L F, Niu J F, Shen Z Y, Sun Y. The electron structure and photocatalytic activity of Ti (IV) doped Bi2O3. Science China Chemistry, 2011, 54(1): 180–185

    Article  Google Scholar 

  15. Yin L F, Shen Z Y, Niu J F, Chen J, Duan Y P. Degradation of pentachlorophenol and 2, 4-dichlorophenol by sequential visiblelight driven photocatalysis and laccase catalysis. Environmental Science & Technology, 2010, 44(23): 9117–9122

    Article  CAS  Google Scholar 

  16. Safe S, Bunce N J, Chittim B, Hutzinger O, Ruzo L O. Photodecomposition of halogenated aromatic compounds. In: Keith L H, ed. Identification and Analysis of Organic Pollutants in Water. Ann Arbor: Ann Arbor Science Publishers Inc., 1975, 35–47

    Google Scholar 

  17. Moore T, Pagni R M. Unusual photochemistry of 4-chlorobiphenyl in water. Journal of Organic Chemistry, 1987, 52(5): 770–773

    Article  CAS  Google Scholar 

  18. Lores M, Llompart M, González-García R, González-Barreiro C, Cela R. Photolysis of polychlorinated biphenyls by solid-phase microextraction. “On-fibre” versus aqueous photodegradation. Journal of Chromatography. A, 2002, 963(1–2): 37–47

    Article  CAS  Google Scholar 

  19. Chang F C, Chiu T C, Yen J H, Wang Y S. Dechlorination pathways of ortho-substituted PCBs by UV irradiation in n-hexane and their correlation to the charge distribution on carbon atom. Chemosphere, 2003, 51(8): 775–784

    Article  CAS  Google Scholar 

  20. Chang F C, Hsieh Y N, Wang Y S. Dechlorination of PCBs in water under UV irradiation and the relationship between the electric charge distribution on the carbon atom and the site of dechlorination occurrence. Bulletin of Environmental Contamination and Toxicology, 2003, 71(5): 971–978

    Article  CAS  Google Scholar 

  21. Niu J F, Yang Z F, Shen Z Y, Wang L L. QSPRs for the prediction of photodegradation half-life of PCBs in n-hexane. SAR and QSAR in Environmental Research, 2006, 17(2): 173–182

    Article  CAS  Google Scholar 

  22. Lepine F L, Milot S M, Vincent N M, Gravel D. Photochemistry of higher chlorinated PCBs in cyclohexane. Journal of Agricultural and Food Chemistry, 1991, 39(11): 2053–2056

    Article  CAS  Google Scholar 

  23. Miao X S, Chu S G, Xu X B. Photodegradation of 2, 2′, 5, 5′-tetrachlorobiphenyl in hexane. Bulletin of Environmental Contamination and Toxicology, 1996, 56(4): 571–574

    Article  CAS  Google Scholar 

  24. Miao X S, Chu S G, Xu X B. Degradation pathways of PCBs upon UV irradiation in hexane. Chemosphere, 1999, 39(10): 1639–1650

    Article  CAS  Google Scholar 

  25. Hawari J, Demeter A, Samson R. Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol: dechlorination of Aroclor 1254 in soil samples by solar radiation. Environmental Science & Technology, 1992, 26(10): 2022–2027

    Article  CAS  Google Scholar 

  26. Huang I W, Hong C S, Bush B. Photocatalytic degradation of PCBs in TiO2 aqueous suspensions. Chemosphere, 1996, 32(9): 1869–1881

    Article  CAS  Google Scholar 

  27. Chen JW, Wang D G, Wang S L, Qiao X L, Huang L P. Quantitative structure-property relationships for direct photolysis of polybrominated diphenyl ethers. Ecotoxicology and Environmental Safety, 2007, 66(3): 348–352

    Article  CAS  Google Scholar 

  28. Long X X, Niu J F. Estimation of gas-phase reaction rate constants of alkylnaphthalenes with chlorine, hydroxyl and nitrate radicals. Chemosphere, 2007, 67(10): 2028–2034

    Article  CAS  Google Scholar 

  29. Niu J, Yu G. Molecular structural characteristics governing biocatalytic chlorination of PAHs by chloroperoxidase from Caldariomyces fumago. SAR and QSAR in Environmental Research, 2004, 15(3): 159–167

    Article  CAS  Google Scholar 

  30. Niu J F, Sun P, Schramm K W. Photolysis of polycyclic aromatic hydrocarbons associated with fly ash particles under simulated sunlight irradiation. Journal of Photochemistry and Photobiology A:, 2007, 186(1): 93–98

    Article  CAS  Google Scholar 

  31. Wang B, Yu G, Hu H, Wang L. Quantitative structure-activity relationships and mixture toxicity of substituted benzaldehydes to Photobacterium phosphoreum. Bulletin of Environmental Contamination and Toxicology, 2007, 78(6): 503–509

    Article  CAS  Google Scholar 

  32. Zhang S Y, Chen J W, Qiao X L, Ge L K, Cai X Y, Na G S. Quantum chemical investigation and experimental verification on the aquatic photochemistry of the sunscreen 2-phenylbenzimidazole-5-sulfonic acid. Environmental Science & Technology, 2010, 44(19): 7484–7490

    Article  CAS  Google Scholar 

  33. Ding G H, Li X, Zhang F, Chen J W, Huang L P, Qiao X L. Mechanism-based quantitative structure-activity relationships on toxicity of selected herbicides to Chlorella vulgaris and Raphidocelis subcapitata. Bulletin of Environmental Contamination and Toxicology, 2009, 83(4): 520–524

    Article  CAS  Google Scholar 

  34. Chen J W, Quan X, Yang F L, Peijnenburg W J. Quantitative structure-property relationships on photodegradation of PCDD/Fs in cuticular waxes of laurel cherry (Prunus laurocerasus). The Science of the Total Environment, 2001, 269(1–3): 163–170

    CAS  Google Scholar 

  35. Kim M K, O’Keefe P W. Photodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in aqueous solutions and in organic solvents. Chemosphere, 2000, 41(6): 793–800

    Article  CAS  Google Scholar 

  36. Pearson R G. Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(22): 8440–8441

    Article  CAS  Google Scholar 

  37. Faucon J C, Bureau R, Faisant J, Briens F, Rault S. Prediction of the fish acute toxicity from heterogeneous data coming from notification files. Chemosphere, 1999, 38(14): 3261–3276

    Article  CAS  Google Scholar 

  38. Zhang Z Y, Niu J F, Zhi X A. A QSAR model for predicting mutagenicity of nitronaphthalenes and methylnitronaphthalenes. Bulletin of Environmental Contamination and Toxicology, 2008, 81(5): 498–502

    Article  CAS  Google Scholar 

  39. Chen J W, Yang P, Chen S, Quan X, Yuan X, Schramm K W, Kettrup A. Quantitative structure-property relationships for vapor pressures of polybrominated diphenyl ethers. SAR and QSAR in Environmental Research, 2003, 14(2): 97–111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghong Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, Y., Huang, Q., Wang, W. et al. Application of quantum chemical descriptors into quantitative structure-property relationship models for prediction of the photolysis half-life of PCBs in water. Front. Environ. Sci. Eng. China 5, 505–511 (2011). https://doi.org/10.1007/s11783-011-0318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-011-0318-2

Keywords

Navigation