Skip to main content
Log in

Identification of cadmium-induced genes in maize seedlings by suppression subtractive hybridization

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

A maize variety, Huatian-1, had an unusually low translocation rate of cadmium (Cd) (59.6 mg°kg−1 in the roots and 0.093 mg°kg−1 in the grain) compared to 24 other varieties while being grown in soils with 16.50 mg°kg−1 Cd. This indicates that this particular species may have special mechanisms that affect the absorption and translocation pattern of Cd. In this paper, the technique of suppression subtractive hybridization (SSH) was used to isolate and identify Cd-induced genes from Huatian-1 hydroponically exposed to 0.1mM CdCl2 for 1 h, 12 h, 24 h, and 48 h. We found a total of 15 differentially expressed genes in the four groups; 2, 3, 4, and 6 genes were from the groups of 1 h, 12 h, 24 h, and 48 h treatment, respectively. Phospholipase PLDb1 mRNA, adenosine triphosphate (ATP) phosphoribosyl transferase 2, and Sp17 were turned on in the maize in response to Cd stress, and it might provide new clues to explain the mechanism of maize tolerance to Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lane T W, Saito M A, George G N, Pickering I J, Prince R C, Morel F M M. Biochemistry: a cadmium enzyme from a marine diatom. Nature, 2005, 435(7038): 42

    Article  CAS  Google Scholar 

  2. Vido K, Spector D, Lagniel G, Lopez S, Toledano M B, Labarre J. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2001, 276(11): 8469–8474

    Article  CAS  Google Scholar 

  3. IARC, Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry. In: IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 58, Lyon: IARC, 1993, 119–237

    Google Scholar 

  4. Bertin G, Averbeck D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie, 2006, 88(11): 1549–1559

    Article  CAS  Google Scholar 

  5. Grant C A, Clarke J M, Duguid S, Chaney R L. Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the Total Environment, 2008, 390(2–3): 301–310

    Article  CAS  Google Scholar 

  6. Yu H, Wang J, Fang W, Yuan J, Yang Z. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Science of the Total Environment, 2006, 370(2–3): 302–309

    Article  CAS  Google Scholar 

  7. Dai Q, Yuan J, Fang W, Yang Z. Differences on Pb accumulation among plant tissues of 25 varieties of maize (Zea mays). Frontiers of Biology in China, 2007, 2(3): 303–308

    Article  Google Scholar 

  8. Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 2002, 53(1): 159–182

    Article  CAS  Google Scholar 

  9. Blum R, Beck A, Korte A, Stengel A, Letzel T, Lendzian K, Grill E. Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant Journal, 2007, 49(4): 740–749

    Article  CAS  Google Scholar 

  10. Zenk M H. Heavy metal detoxification in higher plants—a review. Gene, 1996, 179(1): 21–30

    Article  CAS  Google Scholar 

  11. Hanikenne M, Talke I N, Haydon M J, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 2008, 453(7193): 391–395

    Article  CAS  Google Scholar 

  12. Dai Q. Variety differences of Zea mays in response to cadmium (Cd) or lead (Pb) stress and mechanisms. Ph. D. Dissertation. Sun Yat-sen University, Guangzhou. 2005: 22–32 (in Chinese)

    Google Scholar 

  13. Diatchenko L, Lukyanov S, Lau Y F, Siebert P D. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods in Enzymology, 1999, 303: 349–380

    Article  CAS  Google Scholar 

  14. Huang B, Xin J, Yang Z, Zhou Y, Yuan J, Gong Y. Suppression subtractive hybridization (SSH)-based method for estimating Cdinduced differences in gene expression at cultivar level and identification of genes induced by Cd in two water spinach cultivars. Journal of Agricultural and Food Chemistry, 2009, 57(19): 8950–8962

    Article  CAS  Google Scholar 

  15. Shi C, Ingvardsen C, Thümmler F, Melchinger A E, Wenzel G, Lübberstedt T. Identification by suppression subtractive hybridization of genes that are differentially expressed between near-isogenic maize lines in association with sugarcane mosaic virus resistance. Molecular Genetics and Genomics, 2005, 273(6): 450–461

    Article  CAS  Google Scholar 

  16. Li H, Huang S, Shi Y, Song Y, Zhao J, Wang F, Wang T, Li Y. Isolating soil drought-induced genes from maize seedlings leaves through suppression subtractive hybridization. Agricultural Sciences in China, 2007, 6(6): 647–651

    Article  CAS  Google Scholar 

  17. Tang H, Zheng Y L, He L Y, Li J S. [Isolation of maize genes related to aluminum tolerance]. ZhiWu Sheng Li Yu Fen Zi ShengWu Xue Xue Bao, 2005, 31(5): 507–514 (in Chinese)

    CAS  Google Scholar 

  18. Kay R, Chan A M Y, Daly M, McPherson J. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science, 1987, 236(4806): 1299–1302

    Article  CAS  Google Scholar 

  19. Franz O, Bruchhaus I, Roeder T. Verification of differential gene transcription using virtual northern blotting. Nucleic Acids Research, 1999, 27(11): e3

    Article  CAS  Google Scholar 

  20. Endege W O, Steinmann K E, Boardman L A, Thibodeau S N, Schlegel R. Representative cDNA libraries and their utility in gene expression profiling. Biotechniques, 1999, 26(3): 542–548, 550

    CAS  Google Scholar 

  21. Palmiter R D, Huang L. Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Archiv, 2004, 447(5): 744–751

    Article  CAS  Google Scholar 

  22. Foley R C, Liang Z M, Singh K B. Analysis of type 1 metallothionein cDNAs in Vicia faba. Plant Molecular Biology, 1997, 33(4): 583–591

    Article  CAS  Google Scholar 

  23. Gonzalez-Mendoza D, Moreno A Q, Zapata-Perez O. Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquatic Toxicology (Amsterdam, Netherlands), 2007, 83(4): 306–314

    CAS  Google Scholar 

  24. Bartels A, Mock H P, Papenbrock J. Differential expression of Arabidopsis sulfurtransferases under various growth conditions. Plant Physiology and Biochemistry, 2007, 45(3–4): 178–187

    Article  CAS  Google Scholar 

  25. Anosike E O, Ugochukwu E N. Characterization of rhodanese from cassava leaves and tubers. Journal of Experimental Botany, 1981, 32(5): 1021–1027

    Article  CAS  Google Scholar 

  26. Louie M, Kondor N, DeWitt J G. Gene expression in cadmium-tolerant Datura innoxia: detection and characterization of cDNAs induced in response to Cd2+. Plant Molecular Biology, 2003, 52(1): 81–89

    Article  CAS  Google Scholar 

  27. Howden R, Cobbett C S. Cadmium-sensitive mutants of Arabidopsis thaliana. Plant Physiology, 1992, 100(1): 100–107

    Article  CAS  Google Scholar 

  28. Salt D E, Rauser W E. MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol, 1995, 107(4): 1293–1301

    CAS  Google Scholar 

  29. Chen A, Komives E A, Schroeder J I. An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiology, 2006, 141(1): 108–120

    Article  CAS  Google Scholar 

  30. Gong J M, Lee D A, Schroeder J I. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(17): 10118–10123

    Article  CAS  Google Scholar 

  31. Ohta D, Fujimori K, Mizutani M, Nakayama Y, Kunpaisal-Hashimoto R, Münzer S, Kozaki A. Molecular cloning and characterization of ATP-phosphoribosyl transferase from Arabidopsis, a key enzyme in the histidine biosynthetic pathway. Plant Physiology, 2000, 122(3): 907–914

    Article  CAS  Google Scholar 

  32. Wycisk K, Kim E J, Schroeder J I, Krämer U. Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana. FEBS Letters, 2004, 578(1–2): 128–134

    Article  CAS  Google Scholar 

  33. Maarouf H E, Zuily-Fodil Y, Gareil M, d’Arcy-Lameta A, Pham-Thi A. Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp. differing in drought tolerance. Plant Molecular Biology, 1999, 39(6): 1257–1265

    Article  Google Scholar 

  34. Bargmann B O, Munnik T. The role of phospholipase D in plant stress responses. Current Opinion in Plant Biology, 2006, 9(5): 515–522

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, Q., Huang, B., Yang, Z. et al. Identification of cadmium-induced genes in maize seedlings by suppression subtractive hybridization. Front. Environ. Sci. Eng. China 4, 449–458 (2010). https://doi.org/10.1007/s11783-010-0250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-010-0250-x

Keywords

Navigation