Skip to main content
Log in

Cationic organobismuth complex as an effective catalyst for conversion of CO2 into cyclic carbonates

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

In order to achieve high-efficiency conversion of CO2 into valuable chemicals, and to exploit new applications of organobismuth compounds, cationic organobismuth complex with 5,6,7,12-tetrahydrodibenz[c,f][1,5] azabismocine framework was examined for the first time for the coupling of CO2 into cyclic carbonates, using terminal epoxides as substrates and tetrabutylammonium halide as co-catalyst in a solvent-free environment under mild conditions. It is shown that the catalyst exhibited high activity and selectivity for the coupling reaction of CO2 with a wide range of terminal epoxide. The selectivity of propylene carbonates could reach 100%, and the maximum turnover frequency was up to 10740 h−1 at 120°C and 3 MPa CO2 pressure when tetrabutylammonium iodide was used as co-catalyst. Moreover, the catalyst is environment friendly, resistant to air and water, and can be readily reused and recycled without any loss of activity, demonstrating a potential in industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakakura T, Choi J C, Yasuda H. Transformation of carbon dioxide. Chem. Rev., 2007, 107 (6): 2365–2387

    Article  CAS  Google Scholar 

  2. Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E, Wright I. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci., 2008, 20 (1): 14–27

    Article  CAS  Google Scholar 

  3. Kasuga K, Kabata N. The fixation of carbon dioxide with 1,2-epoxypropane catalyzed by alkali-metal halide in the presence of a crown ether. Inorg. Chim. Acta, 1997, 257 (2): 277–278

    Article  CAS  Google Scholar 

  4. Lu X B, Zhang Y J, Jin K, Luo L M, Wang H. Highly active electrophile-nucleophile catalyst system for the cycloaddition of CO2 to epoxides at ambient temperature. J. Catal., 2004, 227 (2): 537–541

    Article  CAS  Google Scholar 

  5. Jing H, Nguyen S T. SnCl4-organic base: Highly efficient catalyst system for coupling reaction of CO2 and epoxides. J. Mol. Catal. A, 2007, 261 (1): 12–15

    Article  CAS  Google Scholar 

  6. Kim H S, Kim J J, Kim H, Jang H G. Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide. J. Catal., 2003, 220 (1): 44–46

    Article  CAS  Google Scholar 

  7. Li F, Xiao L, Xia C, Hu B. Chemical fixation of CO2 with highly efficient ZnCl2/[BMIm]Br catalyst system. Tetrahedron Lett., 2004, 45 (45): 8307–8310

    Article  CAS  Google Scholar 

  8. Sun J, Fujita S, Zhao F, Arai M. Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions. Green Chem., 2004, 6(12): 613–616

    Article  CAS  Google Scholar 

  9. Xiao L F, Li F W, Peng J J, Xia C G. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. J. Mol. Catal. A, 2006, 253 (1-2): 265–269

    Article  CAS  Google Scholar 

  10. Xiao L F, Li F W, Xia C G. An easily recoverable and efficient natural biopolymer-supported zinc chloride catalyst system for the chemical fixation of carbon dioxide to cyclic carbonate. Appl. Catal. A, 2005, 279 (1–2): 125–129

    CAS  Google Scholar 

  11. Kim Y J, Varma R S. Tetrahaloindate(III)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates: H-bonding and mechanistic studies. J. Org. Chem., 2005, 70 (20): 7882–7891

    Article  CAS  Google Scholar 

  12. Zhao Y, Tian J S, Qi X H, Han Z N, Zhuang Y Y, He L N. Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Mol. Catal. A, 2007, 271(1–2): 284–289

    CAS  Google Scholar 

  13. Lu X B, Zhang Y J, Liang B, Li X, Wang H. Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts. J. Mol. Catal. A, 2004, 210 (1–2): 31–34

    CAS  Google Scholar 

  14. Lu X B, He R, Bai C X. Synthesis of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture in the presence of bifunctional catalyst. J. Mol. Catal. A, 2002, 186 (1–2): 1–11

    CAS  Google Scholar 

  15. Sun J M, Fujita S I, Zhao F Y, Arai M. A highly efficient catalyst system of ZnBr2/n-Bu4NI for the synthesis of styrene carbonate from styrene oxide and supercritical carbon dioxide. Appl. Catal. A, 2005, 287 (2): 221–226

    Article  CAS  Google Scholar 

  16. Ono F, Qiao K, Tomida D, Yokoyama C. Rapid synthesis of cyclic carbonates from CO2 and epoxides under microwave irradiation with controlled temperature and pressure. J. Mol. Catal. A, 2007, 263 (1–2): 223–226

    CAS  Google Scholar 

  17. Xie H, Li S, Zhang S. Highly active, hexabutylguanidinium salt/zinc bromide binary catalyst for the coupling reaction of carbon dioxide and epoxides. J. Mol. Catal. A, 2006, 250 (1–2): 30–34

    CAS  Google Scholar 

  18. Sun J, Wang L, Zhang S, Li Z, Zhang X, Dai W, Mori R. ZnCl2/phosphonium halide: An efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate. J. Mol. Catal. A, 2006, 256 (1–2): 295–300

    CAS  Google Scholar 

  19. Paddock R L, Nguyen S T. Chemical CO2 fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J. Am. Chem. Soc., 2001, 123 (46): 11498–11499

    Article  CAS  Google Scholar 

  20. Jutz F, Grunwaldt J D, Baiker A. Mn(III)(salen)-catalyzed synthesis of cyclic organic carbonates from propylene and styrene oxide in “supercritical” CO2. J. Mol. Catal. A, 2008, 279(1): 94–103

    Article  CAS  Google Scholar 

  21. Bu Z, Qin G, Cao S. A ruthenium complex exhibiting high catalytic efficiency for the formation of propylene carbonate from carbon dioxide. J. Mol. Catal. A, 2007, 277(1–2): 35–39

    CAS  Google Scholar 

  22. Suzuki H, Matano Y. Organobismuth Chemistry. Amsterdam: Elsevier, 2001

    Google Scholar 

  23. Gagnon A, St-Onge M, Little K, Duplessis M, Barabeì F. Direct N-cyclopropylation of cyclic amides and azoles employing a cyclopropylbismuth reagent. J. Am. Chem. Soc., 2007, 129(1): 44–45

    Article  CAS  Google Scholar 

  24. Wu S S, Dai W L, Yin S F, Li W S, Au C T. Bismuth subnitrate as an efficient heterogeneous catalyst for acetalization and ketalization of carbonyl compounds with diols. Catal. Lett., 2008, 124 (1–2): 127–132

    Article  CAS  Google Scholar 

  25. Bao M, Hayashi T, Shimada S. Cationic organobismuth complex with 5,6,7,12-tetrahydrodibenz[c,f][1,5]azabismocine framework and its coordination complexes with neutral molecules. Organometallics, 2007, 26 (7): 1816–1822

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangfeng Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Dai, W., Yin, S. et al. Cationic organobismuth complex as an effective catalyst for conversion of CO2 into cyclic carbonates. Front. Environ. Sci. Eng. China 3, 32–37 (2009). https://doi.org/10.1007/s11783-008-0068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-008-0068-y

Keywords

Navigation