Skip to main content
Log in

Hydraulic fracturing of granite under real-time high temperature and true triaxial stress

花岗岩实时高温真三轴的水力压裂

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Hydraulic fracturing in the exploitation of hot dry rock (HDR) resources could significantly enhance the permeability and heat production of the reservoir. However, the fracturing mechanism of HDR at high temperatures is still not fully understood. In this study, hydraulic fracturing experiments at room temperature and 200 °C were performed respectively on granite under different true triaxial stress to analyze their different fracturing mechanisms. Optical microscope and nuclear magnetic resonance were applied to identify pore and crack characteristics of fractured samples from micro- to macro-scale. The test results show that hydraulic fracturing at 200 °C can significantly reduce the breakdown pressure and fracture initiation pressure under the same stress condition compared to hydraulic fracturing at room temperature. The wellbore pressurization stage at 200 °C deviates distinctly from linearity. The cloud fracture with multi-scale crack, rather than a dominant fracture at room temperature, was formed at 200 °C even under a horizontal stress difference of 20 MPa. Moreover, the nuclear magnetic resonance result shows an increase in fracturing volume caused by the increment of micro-scale crack in the fractured sample at 200 °C. The main reason for the above transition is that the pore pressure diffusion at 200 °C generates more micro-scale cracks.

摘要

在干热岩资源开发中,水力压裂是提高热储层的渗透率与产热量的重要手段。然而,在高温高压环境下的水力压裂机理仍不清楚。本文在不同真三轴应力下对花岗岩进行了室温与200 ℃下的水力压裂试验,应用光学显微镜和核磁共振技术,表征了花岗岩试样水力裂缝从微观至宏观的特征形态,揭示了不同温度下的水力压裂机理。试验结果表明,在相同应力条件下,相对于室温下水力压裂,200 ℃下水力压裂能显著降低破裂压力与起裂压力,200 ℃下压裂曲线增压阶段明显偏离线性。在20 MPa的水平应力差下,200 ℃下水力压裂会形成具有多尺度裂纹的云状裂缝,而不是与室温下水力压裂类似的单一主裂缝。此外,核磁共振结果显示,在200 ℃水力压裂后的花岗岩试样中,微尺度裂纹的增加会导致压裂体积增加,这是由200 ℃水力压裂下孔隙压力的扩散导致微裂纹而造成的。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. LU S M. A global review of enhanced geothermal system (EGS) [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2902–2921. DOI: https://doi.org/10.1016/j.rser.2017.06.097.

    Article  Google Scholar 

  2. OLASOLO P, JUÁREZ M C, MORALES M P, et al. Enhanced geothermal systems (EGS): A review [J]. Renewable and Sustainable Energy Reviews, 2016, 56: 133–144. DOI: https://doi.org/10.1016/j.rser.2015.11.031.

    Article  Google Scholar 

  3. GOTO R, WATANABE N, SAKAGUCHI K, et al. Creating cloud-fracture network by flow-induced microfracturing in superhot geothermal environments [J]. Rock Mechanics and Rock Engineering, 2021, 54(6): 2959–2974. DOI: https://doi.org/10.1007/s00603-021-02416-z.

    Article  Google Scholar 

  4. KELKAR S, WOLDEGABRIEL G, REHFELDT K. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA [J]. Geothermics, 2016, 63: 5–14. DOI: https://doi.org/10.1016/j.geothermics.2015.08.008.

    Article  Google Scholar 

  5. LI Ning, MA Xin-fang, ZHANG Shi-cheng, et al. Thermal effects on the physical and mechanical properties and fracture initiation of Laizhou granite during hydraulic fracturing [J]. Rock Mechanics and Rock Engineering, 2020, 53(6): 2539–2556. DOI: https://doi.org/10.1007/s00603-020-02082-7.

    Article  Google Scholar 

  6. LI Ning, ZHANG Shi-cheng, WANG Hai-bo, et al. Effect of thermal shock on laboratory hydraulic fracturing in Laizhou granite: An experimental study [J]. Engineering Fracture Mechanics, 2021, 248: 107741. DOI: https://doi.org/10.1016/j.engfracmech.2021.107741.

    Article  Google Scholar 

  7. ZHAO Xing-long, HUANG Bing-xiang, CHENG Qing-ying, et al. Experimental investigation on basic law of rock directional fracturing with static expansive agent controlled by dense linear multi boreholes [J]. Journal of Central South University, 2021, 28(8): 2499–2513. DOI: https://doi.org/10.1007/s11771-021-4782-y.

    Article  Google Scholar 

  8. GONG Feng-qiang, WANG Yun-liang, LUO Song. Rockburst proneness criteria for rock materials: Review and new insights [J]. Journal of Central South University, 2020, 27(10): 2793–2821. DOI: https://doi.org/10.1007/s11771-020-4511-y.

    Article  Google Scholar 

  9. SAUSSE J, FOURAR M, GENTER A. Permeability and alteration within the Soultz granite inferred from geophysical and flow log analysis [J]. Geothermics, 2006, 35(5–6): 544–560. DOI: https://doi.org/10.1016/j.geothermics.2006.07.003.

    Article  Google Scholar 

  10. LEI Zhi-hong, ZHANG Yan-jun, YU Zi-wang, et al. Exploratory research into the enhanced geothermal system power generation project: The Qiabuqia geothermal field, Northwest China [J]. Renewable Energy, 2019, 139: 52–70. DOI: https://doi.org/10.1016/j.renene.2019.01.088.

    Article  Google Scholar 

  11. SCHILL E, GENTER A, CUENOT N, et al. Hydraulic performance history at the Soultz EGS reservoirs from stimulation and long-term circulation tests [J]. Geothermics, 2017, 70: 110–124. DOI: https://doi.org/10.1016/j.geothermics.2017.06.003.

    Article  Google Scholar 

  12. TALEGHANI A D, AHMADI M, WANG W, et al. Thermal reactivation of microfractures and its potential impact on hydraulic-fracture efficiency [J]. SPE Journal, 2014, 19(5): 761–770. DOI: https://doi.org/10.2118/163872-pa.

    Article  Google Scholar 

  13. WATANABE N, EGAWA M, SAKAGUCHI K, et al. Hydraulic fracturing and permeability enhancement in granite from subcritical/brittle to supercritical/ductile conditions [J]. Geophysical Research Letters, 2017, 44(11): 5468–5475. DOI: https://doi.org/10.1002/2017GL073898.

    Article  Google Scholar 

  14. YANG Rui-yue, HONG Chun-yang, LIU Wei, et al. Non-contaminating cryogenic fluid access to high-temperature resources: Liquid nitrogen fracturing in a lab-scale enhanced geothermal system [J]. Renewable Energy, 2021, 165: 125–138. DOI: https://doi.org/10.1016/j.renene.2020.11.006.

    Article  Google Scholar 

  15. LI Biao, DING Quan-fu, XU Nu-wen, et al. Mechanical response and stability analysis of rock mass in high geostress underground powerhouse caverns subjected to excavation [J]. Journal of Central South University, 2020, 27(10): 2971–2984. DOI: https://doi.org/10.1007/s11771-020-4522-8.

    Article  Google Scholar 

  16. McCLURE M W, HORNE R N. An investigation of stimulation mechanisms in enhanced geothermal systems [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72: 242–260. DOI: https://doi.org/10.1016/j.ijrmms.2014.07.011.

    Article  Google Scholar 

  17. ZHANG Yu-shuai, ZHANG Jin-cai, YUAN Bin, et al. In-situ stresses controlling hydraulic fracture propagation and fracture breakdown pressure [J]. Journal of Petroleum Science and Engineering, 2018, 164: 164–173.

    Article  Google Scholar 

  18. GAO Fu-qiang. Influence of hydraulic fracturing of strong roof on mining-induced stress-insight from numerical simulation [J]. Journal of Mining and Strata Control Engineering, 2021, 3(2): 5–13. (in Chinese)

    Google Scholar 

  19. YOU Shuang, LI Fei, SUN Jin-cui, et al. Experimental study on hydraulic failure mechanism and energy storage characteristics of deep granite [J]. Journal of Central South University (Science and Technology), 2021, 52(8): 2839–2848. (in Chinese)

    Google Scholar 

  20. ZHANG Wei, GUO Tian-kui, QU Zhan-qing, et al. Research of fracture initiation and propagation in HDR fracturing under thermal stress from meso-damage perspective [J]. Energy, 2019, 178: 508–521. DOI: https://doi.org/10.1016/j.energy.2019.04.131.

    Article  Google Scholar 

  21. XING Yue-kun, ZHANG Guang-qing, LUO Tian-yu, et al. Hydraulic fracturing in high-temperature granite characterized by acoustic emission [J]. Journal of Petroleum Science and Engineering, 2019, 178: 475–484. DOI: https://doi.org/10.1016/j.petrol.2019.03.050.

    Article  Google Scholar 

  22. KUMARI W G P, RANJITH P G, PERERA M S A, et al. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks [J]. Fuel, 2018, 230: 138–154. DOI: https://doi.org/10.1016/j.fuel.2018.05.040.

    Article  Google Scholar 

  23. ZHOU Chang-bing, WAN Zhi-jun, ZHANG Yuan, et al. Experimental study on hydraulic fracturing of granite under thermal shock [J]. Geothermics, 2018, 71: 146–155. DOI: https://doi.org/10.1016/j.geothermics.2017.09.006.

    Article  Google Scholar 

  24. FENG Xia-ting, HAIMSON B, LI Xiao-chun, et al. ISRM suggested method: Determining deformation and failure characteristics of rocks subjected to true triaxial compression [J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 2011–2020. DOI: https://doi.org/10.1007/s00603-019-01782-z.

    Article  Google Scholar 

  25. MA Xiao, WANG Gui-ling, HU Da-wei, et al. Mechanical properties of granite under real-time high temperature and three-dimensional stress [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 136: 104521. DOI: https://doi.org/10.1016/j.ijrmms.2020.104521.

    Article  Google Scholar 

  26. ZHOU Jun-ping, LIU Guo-jun, JIANG Yong-dong, et al. Supercritical carbon dioxide fracturing in shale and the coupled effects on the permeability of fractured shale: An experimental study [J]. Journal of Natural Gas Science and Engineering, 2016, 36: 369–377. DOI: https://doi.org/10.1016/j.jngse.2016.10.005.

    Article  Google Scholar 

  27. CHENG Yu-xiang, ZHANG Yan-jun, YU Zi-wang, et al. Investigation on reservoir stimulation characteristics in hot dry rock geothermal formations of China during hydraulic fracturing [J]. Rock Mechanics and Rock Engineering, 2021, 54(8): 3817–3845. DOI: https://doi.org/10.1007/s00603-021-02506-y.

    Article  Google Scholar 

  28. VERA R I, STANCHITS S. Spatial and temporal variation of seismic attenuation during hydraulic fracturing of a sandstone block subjected to triaxial stress [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 9012–9030. DOI: https://doi.org/10.1002/2017JB014602.

    Article  Google Scholar 

  29. FRASH L P, GUTIERREZ M, HAMPTON J, et al. Laboratory simulation of binary and triple well EGS in large granite blocks using AE events for drilling guidance [J]. Geothermics, 2015, 55: 1–15. DOI: https://doi.org/10.1016/j.geothermics.2015.01.002.

    Article  Google Scholar 

  30. BEHROOZMAND A A, KNIGHT R, MÜLLER-PETKE M, et al. Successful sampling strategy advances laboratory studies of NMR logging in unconsolidated aquifers [J]. Geophysical Research Letters, 2017, 44(21): 11021–11029. DOI: https://doi.org/10.1002/2017GL074999.

    Article  Google Scholar 

  31. WENG Lei, WU Zhi-jun, LI Xi-bing. Mesodamage characteristics of rock with a pre-cut opening under combined static-dynamic loads: A nuclear magnetic resonance (NMR) investigation [J]. Rock Mechanics and Rock Engineering, 2018, 51(8): 2339–2354. DOI: https://doi.org/10.1007/s00603-018-1483-4.

    Article  Google Scholar 

  32. ZHOU Yuan, WU Zhi-jun, WENG Lei, et al. Seepage characteristics of chemical grout flow in porous sandstone with a fracture under different temperature conditions: An NMR based experimental investigation [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104764. DOI: https://doi.org/10.1016/j.ijrmms.2021.104764.

    Article  Google Scholar 

  33. WANNIARACHCHI W, GAMAGE R, PERERA M, et al. Investigation of depth and injection pressure effects on breakdown pressure and fracture permeability of shale reservoirs: An experimental study [J]. Applied Sciences, 2017, 7(7): 664. DOI: https://doi.org/10.3390/app7070664.

    Article  Google Scholar 

  34. WU Fei-peng, DE LI, FAN Xian-zhang, et al. Analytical interpretation of hydraulic fracturing initiation pressure and breakdown pressure [J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103185. DOI: https://doi.org/10.1016/j.jngse.2020.103185.

    Article  Google Scholar 

  35. HE Jian-ming, LIN Chong, LI Xiao, et al. Initiation, propagation, closure and morphology of hydraulic fractures in sandstone cores [J]. Fuel, 2017, 208: 65–70. DOI: https://doi.org/10.1016/j.fuel.2017.06.080.

    Article  Google Scholar 

  36. CNUDDE V, CWIRZEN A, MASSCHAELE B, et al. Porosity and microstructure characterization of building stones and concretes [J]. Engineering Geology, 2009, 103(3–4): 76–83. DOI: https://doi.org/10.1016/j.enggeo.2008.06.014.

    Article  Google Scholar 

  37. TANG Zong-qing, ZHAI Cheng, ZOU Quan-le, et al. Changes to coal pores and fracture development by ultrasonic wave excitation using nuclear magnetic resonance [J]. Fuel, 2016, 186: 571–578. DOI: https://doi.org/10.1016/j.fuel.2016.08.103.

    Article  Google Scholar 

  38. XU Xiao-li, KARAKUS M, GAO Feng, et al. Thermal damage constitutive model for rock considering damage threshold and residual strength [J]. Journal of Central South University, 2018, 25(10): 2523–2536. DOI: https://doi.org/10.1007/s11771-018-3933-2.

    Article  Google Scholar 

  39. ZHANG Fan, ZHAO Jian-jian, HU Da-wei, et al. Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment [J]. Rock Mechanics and Rock Engineering, 2018, 51(3): 677–694. DOI: https://doi.org/10.1007/s00603-017-1350-8.

    Article  Google Scholar 

  40. HE Ming, YU Li-yuan, LIU Ri-cheng, et al. Experimental investigation on mechanical behaviors of granites after high-temperature exposure [J]. Journal of Central South University, 2022, 29(4): 1332–1344. DOI: https://doi.org/10.1007/s11771-022-4998-5.

    Article  Google Scholar 

  41. CHEN Shi-wan, LIANG Feng, ZUO Shuang-ying, et al. Evolution of deformation property and strength component mobilization for thermally treated Beishan granite under compression [J]. Journal of Central South University, 2021, 28(1): 219–234. DOI: https://doi.org/10.1007/s11771-021-4598-9.

    Article  Google Scholar 

  42. WAGNER W, KRETZSCHMAR H J. International Steam Tables [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. DOI: https://doi.org/10.1007/978-3-540-74234-0.

    Book  Google Scholar 

  43. ZOU Yu-shi, LI Ning, MA Xin-fang, et al. Experimental study on the growth behavior of supercritical CO2-induced fractures in a layered tight sandstone formation [J]. Journal of Natural Gas Science and Engineering, 2018, 49: 145–156. DOI: https://doi.org/10.1016/j.jngse.2017.11.005.

    Article  Google Scholar 

  44. GUO F, MORGENSTERN N R, SCOTT J D. Interpretation of hydraulic fracturing breakdown pressure [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(6): 617–626. DOI: https://doi.org/10.1016/0148-9062(93)91221-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MA Xiao conducted experiments and wrote the first draft of manuscript. HU Da-wei developed the overarching research goals and edited the draft of manuscript. WANG Gui-ling conducted the literature review and edited the manuscript. ZHOU Hui edited the manuscript.

Corresponding author

Correspondence to Da-wei Hu  (胡大伟).

Additional information

Conflict of interest

MA Xiao, WANG Gui-ling, HU Da-wei and ZHOU Hui declare that they have no conflict of interest.

Foundation item: Project(51979100) supported by the National Natural Science Foundation of China; Project(DD20190128) supported by the China Geological Survey Bureau; Project(2021JM-373)supported by the Science Foundation of Shaanxi province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Wang, Gl., Hu, Dw. et al. Hydraulic fracturing of granite under real-time high temperature and true triaxial stress. J. Cent. South Univ. 30, 243–256 (2023). https://doi.org/10.1007/s11771-023-5221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5221-z

Key words

关键词

Navigation