Skip to main content
Log in

Influence of prior cyclic oxidation on high temperature low cycle fatigue life of bare and Pt-Al coated superalloy Rene®80

预循环氧化对无涂层和有Pt-Al 涂层的Rene®80 高温合金的高温低循环疲劳寿命的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The prediction of fatigue life of metallic alloys is justly accepted as one of the most important phenomena in the field of metallurgical and mechanical engineering. At elevated temperatures, oxidation of the surfaces has an effective role in the fatigue strength and ductility of the alloys. In the present work, the effect of prior cyclic oxidation on the high temperature low cycle fatigue (HTLCF) properties of nickel-based superalloy Rene®80 has been assessed in the uncoated state and in the Pt-aluminide (Pt-Al) coated condition at 930 °C. To apply cyclic oxidation, simulation of engine thermal exposure was carried out by exposing coated and uncoated fatigue specimens in the burner rig (120 cycles at 1100°C). The cyclic oxidation procedure led to a changing in the coating microstructure from the dual-phase (ξ-PtAl2 + β-(Ni, Pt) Al) to single phase (β-(Ni, Pt)Al). Results of HTLCF tests showed an improvement in the HTLCF life around 11.5% in the unexposed coated specimen (pre-cyclic oxidation) as compared to unexposed bare specimen, while this rise for exposed coated specimen (post-cyclic oxidation) was only 5%. Although a mixed mode fracture morphology (ductile and brittle) was observed on the fracture surfaces of failed specimens, the wider regions of brittle fracture belonged to exposed coated/uncoated ones.

摘要

预测金属合金的疲劳寿命是冶金和机械工程领域中最重要的研究之一。在高温下, 表面氧化对 合金的疲劳强度和延展性有重要影响。本文研究了预循环氧化对无涂层和有Pt-Al 涂层的镍基高温合金 Rene®80 在930 °C 时的高温低循环疲劳(HTLCF)性能的影响。将有涂层和无涂层的疲劳试样在燃烧器 钻机中进行发动机热暴露模拟(1100 °C, 120 次循环)。循环氧化过程中涂层的微观结构由双相(ξ-PtAl2 + β-(Ni、Pt)Al)转变为单相(β-(Ni、Pt)Al)。结果显示, 与未暴露的无涂层试样相比, 未暴露的涂层试样 (预循环氧化)的HTLCF 寿命延长了约11.5%, 暴露涂层试样(后循环氧化)的仅延长了5%。虽然断裂试 样的断口表现为混合模式断裂形态(延性和脆性), 但暴露涂层/无涂层的试样断口大部分属于脆性断裂。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BARJESTEH M M, ABBASI S M, ZANGENEH-MADAR K, et al. The effect of heat treatment on characteristics of the gamma prime phase and hardness of the nickel-based superalloy Rene80 [J]. Material Chemistry and Physics, 2019, 227: 46–55. DOI: https://doi.org/10.1016/j.matchemphys.2019.01.038.

    Article  Google Scholar 

  2. LI Yong-quan, LI Ji-lin, QIN Chun, et al. Microstructure and hot corrosion behavior ofAl-Ce-Ycoatings on DZ125 nickel-based alloy prepared by pack cementation process [J]. Journal of Central South University, 2020, 27: 381–387. DOI: https://doi.org/10.1007/s11771-020-4303-4.

    Article  Google Scholar 

  3. RIE K T, PORTELLA P D. Low cycle fatigue and elastoplastic behaviour of materials [M]. Elsevier Science Ltd., 1998: 137–138.

  4. YE L, CHENA H, YANG G, et al. Diffusion behavior of Pt in platinum aluminide coatings during thermal cycles [J]. International Journal of Material Research, 2018, 19: 3–9. DOI: https://doi.org/10.3139/146.111572.

    Article  Google Scholar 

  5. SHIRVANI K, FIROUZI S, RASHIDGHAMAT A. Microstructures and cyclic oxidation behaviour of Pt-free and low-Pt NiAl coatings on the Ni-base superalloy Rene80 [J]. Corrosion Science, 2012, 55: 378–384. DOI: https://doi.org/10.1016/j.corsci.2011.10.037.

    Article  Google Scholar 

  6. WEI L L, PENG H, ZHENG L, et al. Processing and oxidation behavior of Pt-diffused coatings [J]. Rare Metals, 2020, 39: 902–908. DOI: https://doi.org/10.1007/s12598-017-0982-x.

    Article  Google Scholar 

  7. ALAM M Z, HAZARI N, VARMA V K, et al. Effect of cyclic oxidation exposure on tensile properties of a pt-aluminide bond-coated Ni-base superalloy [J]. Metallurgical and Materials Transactions A, 2011, 42: 4064–4074. DOI: https://doi.org/10.1007/s11661-011-0803-z.

    Article  Google Scholar 

  8. ESIN V A, MAUREL V, BRETON P, et al. Increase in ductility of Pt-modified nickel aluminide coating with high temperature ageing [J]. Acta Materiala, 2016, 105: 505–518. DOI: https://doi.org/10.1016/j.actamat.2015.12.008.

    Article  Google Scholar 

  9. REID M, POMEROY M J, ROBINSON J S. Microstructural stability of a Ni–Pt–Al coating on CMSX-10 alloy at 950 and 1100 ° C [J]. Materials at High Temperatures, 2003, 20(4): 467–473. DOI: https://doi.org/10.1179/mht.2003.054.

    Article  Google Scholar 

  10. ZHANG Y H, KNOWLES D M, WITHERS P J. Micromechanics of failure of aluminide coated single crystal Ni superalloy under thermomechanical fatigue [J]. Scripta Materiala, 1997, 37(6): 815–820. DOI: https://doi.org/10.1016/S1359-6462(97)00156-5.

    Article  Google Scholar 

  11. GABB T P, TELESMAN J, KANTZOS P T, et al. Effect of high temperature exposure on fatigue life of disk superalloys [C]// Superalloys 2004 (Tenth International Symposium on superalloys). Pennsylvania: TMS (The Minerals, Metals & Materials Society), 2004: 269–274. DOI: https://doi.org/10.7449/2004/Superalloys_2004_269_274.

    Chapter  Google Scholar 

  12. STEPHENS I, FATEMI A, STEPHENS R R, et al. Metal fatigue in engineering [M]. Second Edition. USA: Wiley-Interscience Publication, 1980.

    Google Scholar 

  13. GROSS T S, LAMPMAN S. ASM handbook [M]. Vol. 19, Fatigue and Fracture. ASM International, 1996.

  14. 5403A. Aerospace material specification [S].

  15. BARJESTEH M M, ZANGENEH-MADAR K, ABBASI S M, et al. The effect of platinum-aluminide coating features on high temperature fatigue life of nickel-based superalloy Rene®80 [J]. Journal of Mining and Metallurgy Section B: Metallurgy, 2019, 55(2): 235 -251. DOI: https://doi.org/10.2298/JMMB181214029B.

    Article  Google Scholar 

  16. YANG C, XU Y, NIE H, et al. Effects of heat treatments on the microstructure and mechanical properties of Rene80 [J]. Materials and Design, 2013, 43: 66–73. DOI: https://doi.org/10.1016/j.matdes.2012.06.039.

    Article  Google Scholar 

  17. AGHAIE-KHAFRI M, HAJJAVADI M. The effect of thermal exposure on the properties of a Ni-base superalloy [J]. Materials Science and Engineering A, 2008, 487: 388–393. DOI: https://doi.org/10.1016/j.msea.2007.11.010.

    Article  Google Scholar 

  18. SMART H D M. A study of directionally solidified Rene 80 subjected to short-term over temperature [D]. Winnipeg, Canada: University of Manitoba, 2017.

    Google Scholar 

  19. MITCHELL R J, PREUSS M. Inter-relationships between composition, γ′ morphology, hardness, and γ-γ′ mismatch in advanced polycrystalline nickel-base superalloys during aging at 800 °C [J]. Metallurgical and Materials Transactions A, 2007, 38: 615–627. DOI: https://doi.org/10.1007/s11661-007-9089-6.

    Article  Google Scholar 

  20. YANG C, XU Y, NIE H, et al. Effects of heat treatments on the microstructure and mechanical properties of Rene80 [J]. Materials and Design, 2013, 43: 66–73. DOI: https://doi.org/10.1016/j.matdes.2012.06.039.

    Article  Google Scholar 

  21. AGHAIE-KHAFRI M, FARAHANY S. Creep life prediction of thermally exposed Rene 80 superalloy [J]. Journal of Materials Engineering and Performance, 2010, 19(7): 1065–1070. DOI: https://doi.org/10.1007/s11665-009-9584-6.

    Article  Google Scholar 

  22. ROBERTS T. The structure and stability of high temperature intermetallic phases for application within coating systems [D]. UK: Cranfield University, 2010.

    Google Scholar 

  23. PARLIKAR C, ALAM M Z, CHATTERJEE D, et al. Oxidation and concomitant effects on the microstructure and high temperature tensile properties of a DS Ni-base superalloy applied with different thicknesses of Pt-aluminide (PtAl) bond coat [J]. Surface and Coating Technology, 2019, 373: 25–37. DOI: https://doi.org/10.1016/j.surfcoat.2019.05.060.

    Article  Google Scholar 

  24. ALAM M Z, SARKAR S B, DAS D K. Refurbishment of thermally degraded diffusion Pt-aluminide (PtAl) bond coat on a Ni-base superalloy [J]. Surface and Coating Technology, 2018, 354: 101–111. DOI: https://doi.org/10.1016/j.surfcoat.2018.09.023.

    Article  Google Scholar 

  25. AZARMEHR S A, SHIRVANI K, SCHUTZE M, et al. Microstructural evolution of silicon-platinum modified aluminide coatings on superalloy GTD-111 [J]. Surface and Coating Technology, 2017, 321: 455 -463. DOI: https://doi.org/10.1016/j.surfcoat.2017.05.019.

    Article  Google Scholar 

  26. TEPYLO N, HUANG X, YANG Q. Al depletion and elemental redistribution in PtAl coated CMSX4 and IN738 LC after high temperature exposure [J]. Materials at High Temperatures, 2019, 36(6): 499–510. DOI: https://doi.org/10.1080/09603409.2019.1642556.

    Article  Google Scholar 

  27. ZHONG Z, GU Y, YUAN Y, et al. On the low cycle fatigue behavior of a Ni-base superalloy containing high Co and Ti contents [J]. Material Science and Engineering A, 2012, 552: 434–443. DOI: https://doi.org/10.1016/j.msea.2012.05.067.

    Article  Google Scholar 

  28. ZHANG L, ZHAO L G, ROYAA, et al. Lowcycle-fatigue of single crystal nickel based superalloy-mechanical testing and TEM characterization [J]. Material Science and Engineering A, 2019, 744: 538–547. DOI: https://doi.org/10.1016/j.msea.2018.12.084.

    Article  Google Scholar 

  29. ALAM M Z, SRIVATHSA B, KAMAT S V, et al. Study of Brittle-to-ductile-transition in Pt-aluminide bond coat using micro-tensile testing method [J]. Transactions of the Indian Institute of Metals, 2011, 64(1, 2): 57–61. DOI: https://doi.org/10.1007/s12666-011-0011-y.

    Article  Google Scholar 

  30. MILLER B A. ASM handbook [M]// Vol. 11, Failure Analysis and Prevention. ASM International, 2002.

  31. YUAN K. Thermal and mechanical behaviors of high temperature coatings [D]. Linkoping University, 2013.

  32. MANSURI M R, HADAVI S M M, ZARE E. Effect of Al-Si pack cementation diffusion coating on high-temperature low-cycle fatigue behavior of inconel 713LC [J]. Metallurgical and Materials Transactions A, 2016, 47: 293–300. DOI: https://doi.org/10.1007/s11661-015-3201-0.

    Article  Google Scholar 

  33. PYCZAK F, BIERMANN H, MUGHRABI H, et al. CBED measurement of residual internal strains in the neighborhood of TCP-phases in Ni-base superalloys [C]// Superalloys 2000 (Ninth International Symposium on Superalloys). Pennsylvania: TMS (The Minerals, Metals & Materials Society), 2000: 367–376. DOI: https://doi.org/10.7449/2000/Superalloys_2000_367_376.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Barjesteh.

Additional information

Contributors

Mohammad Mehdi Barjesteh provided the concept, wrote and edited the draft of manuscript. Karim Zangeneh Madar, Seyed Mehdi Abbasi and Kourosh Shirvani conducted the literature review and edited the manuscript.

Conflict of interest

Mohammad Mehdi Barjesteh, Karim Zangeneh Madar, Seyed Mehdi Abbasi and Kourosh Shirvani declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barjesteh, M.M., Madar, K.Z., Abbasi, S.M. et al. Influence of prior cyclic oxidation on high temperature low cycle fatigue life of bare and Pt-Al coated superalloy Rene®80. J. Cent. South Univ. 29, 43–59 (2022). https://doi.org/10.1007/s11771-022-4929-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4929-5

Key words

关键词

Navigation