Skip to main content
Log in

Numerical simulation of dynamic fracture properties of rocks under different static stress conditions

深部高地压条件下岩石动态断裂特性的数值模拟

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

When underground cavities are subjected to explosive stress waves, a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress. In this study, a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions. The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient (K0) were considered. The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures, which were in agreement with the experimental results. The dynamic loading rate, peak amplitude, static vertical compressive coefficient (K0) and confining pressure affected the evolution of fractures around the borehole. The heterogeneity parameter (m) plays an important role in the evolution of fractures around the borehole. The crack propagation path became more discontinuous and rougher in a smaller-heterogeneity parameter case.

摘要

地下洞室爆破开挖在动应力和地应力的共同作用下, 将导致更为复杂的岩体破坏形式。本文基 于二维动力损伤本构模型对不同静力条件下岩体动态破坏机制进行研究, 探讨了不同围压和垂直应力 系数K0作用下动应力的加载速率和峰值对岩体动态变形破坏的影响。研究结果表明:数值模拟获得了 爆破荷载作用下径向裂纹的萌生、扩展以及裂纹分叉、贯通的全过程, 数值模拟的结果与相关物理试 验结果保持一致;模拟了在不同动应力加载速率、加载峰值、垂直应力系数K0和围压作用下岩石动态 破坏全过程, 结合应力场、声发射、破坏图像与受力机理, 分析了不同加载条件下裂纹的产生机理; 非均匀性对裂纹扩展影响很大, 相对于非均质性更强的岩石试样, 主裂缝裂纹扩展路径呈现出很明显 的拐折、不连续的特点, 破裂过程呈现弥散性, 反映了试样内部应力分布复杂。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HU W R, LIU K, POTYONDY D O, et al. 3D continuum-discrete coupled modelling of triaxial Hopkinson bar tests on rock under multiaxial static-dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 134: 104448. DOI: https://doi.org/10.1016/j.ijrmms.2020.104448.

    Article  Google Scholar 

  2. GONG Feng-qiang, SI Xue-feng, LI Xi-bing, et al. Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 211–219. DOI: https://doi.org/10.1016/j.ijrmms.2018.12.005.

    Article  Google Scholar 

  3. ZHAO Fu-jun, XIE Shi-yong, PAN Jian-zhong, et al. Numerical simulation and experimental investigation on rock fragmentation under combined dynamic and static loading [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1290–1295. (in Chinese)

    Google Scholar 

  4. GONG Feng-qiang, LI Xi-bing, LIU Xi-ling. Experimental study of dynamic characteristics of sandstone under one-dimensional coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 2076–2085. (in Chinese)

    Google Scholar 

  5. LIU Shao-hong, QIN Zi-han, LOU Jin-fu. Experimental study of dynamic failure characteristics of coal-rock compound under one-dimensional static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 2064–2075. DOI: https://doi.org/10.13722/j.cnki.jrme.2014.10.013. (in Chinese)

    Google Scholar 

  6. LI Xi-bing, GONG Feng-qiang, TAO Ming, et al. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 767–782. DOI: https://doi.org/10.1016/j.jrmge.2017.04.004.

    Article  Google Scholar 

  7. YANG Zeng-qiang, DOU Lin-ming, LIU Chang, et al. Application of high-pressure water jet technology and the theory of rock burst control in roadway [J]. International Journal of Mining Science and Technology, 2016, 26(5): 929–935. DOI: https://doi.org/10.1016/j.ijmst.2016.05.037.

    Article  Google Scholar 

  8. WANG S Y, SLOAN S W, LIU H Y, et al. Numerical simulation of the rock fragmentation process induced by two drill bits subjected to static and dynamic (impact) loading [J]. Rock Mechanics and Rock Engineering, 2011, 44(3): 317–332. DOI: https://doi.org/10.1007/s00603-010-0123-4.

    Article  Google Scholar 

  9. CHEN Rong, LI Kang, XIA Kai-wen, et al. Dynamic fracture properties of rocks subjected to static pre-load using notched semi-circular bend method [J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3865–3872. DOI: https://doi.org/10.1007/s00603-016-0958-4.

    Article  Google Scholar 

  10. QIAN Qi-hu. The characteristic scientific phenomena of engineering response to deep rock mass and the implication of deepness [J]. Journal of East China University of Technology (Natural Science), 2004, 27(1): 1–5. (in Chinese)

    MathSciNet  Google Scholar 

  11. TAO Jian, YANG Xing-guo, LI Hong-tao, et al. Effects of in situ stresses on dynamic rock responses under blast loading [J]. Mechanics of Materials, 2020, 145: 103374. DOI: https://doi.org/10.1016/j.mechmat.2020.103374.

    Article  Google Scholar 

  12. WANG S Y, SUN L, YANG C, et al. Numerical study on static and dynamic fracture evolution around rock cavities [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5(4): 262–276. DOI: https://doi.org/10.1016/j.jrmge.2012.10.003.

    Article  Google Scholar 

  13. XU Yuan, DAI Feng, DU Hong-bo. Experimental and numerical studies on compression-shear behaviors of brittle rocks subjected to combined static-dynamic loading [J]. International Journal of Mechanical Sciences, 2020, 175: 105520. DOI: https://doi.org/10.1016/j.ijmecsci.2020.105520.

    Article  Google Scholar 

  14. XIA Kai-wen, YAO Wei. Dynamic rock tests using split Hopkinson (Kolsky) bar system — A review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(1): 27–59. DOI: https://doi.org/10.1016/j.jrmge.2014.07.008.

    Article  Google Scholar 

  15. LIU Ye, JING Fu-xing, FENG Yu. Study of occurence mechanism and risk analysis of induced rockbrust in roadway [J]. Rock and Soil Mechanics, 2015, 36(S2): 201–207, 220. DOI: https://doi.org/10.16285/j.rsm.2015.s2.026.

    Google Scholar 

  16. FAN L F, SUN H Y. Seismic wave propagation through an in situ stressed rock mass [J]. Journal of Applied Geophysics, 2015, 121: 13–20. DOI: https://doi.org/10.1016/j.jappgeo.2015.07.002.

    Article  Google Scholar 

  17. LI Xi-bing, GONG Feng-qiang, WANG Shao-feng, et al. Coupled static-dynamic loading mechanical mechanism and dynamic criterion of rockburst in deep hard rock mines [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 708–723. DOI: https://doi.org/10.13722/j.cnki.jrme.2018.1496. (in Chinese)

    Google Scholar 

  18. LI Xi-bing, ZHOU Zi-long, LOK T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 739–748. DOI: https://doi.org/10.1016/j.ijrmms.2007.08.013.

    Article  Google Scholar 

  19. ZHOU Zong-hong, ZHANG Ya-qi, YANG An-guo, et al. Experimental study on mechanical characteristics of dolomite under three-dimensional coupled static-dynamic loading [J]. Journal of China Coal Society, 2015, 40(5): 1030–1036. DOI: https://doi.org/10.13225/j.cnki.jccs.2014.0944. (in Chinese)

    Google Scholar 

  20. LI Xin-ping, DONG Qian, LIU Ting-ting, et al. Research on propagation law of cylindrical stress wave in jointed rock mass under in situ stress [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3121–3131. DOI: https://doi.org/10.13722/j.cnki.jrme.2017.1013. (in Chinese)

    Google Scholar 

  21. WENG Lei, LI Xi-bing, TAHERI A, et al. Fracture evolution around a cavity in brittle rock under uniaxial compression and coupled static-dynamic loads [J]. Rock Mechanics and Rock Engineering, 2018, 51(2): 531–545. DOI: https://doi.org/10.1007/s00603-017-1343-7.

    Article  Google Scholar 

  22. ZHANG Fang-rui, WU Cheng-qing, WANG Hong-wei, et al. Numerical simulation of concrete filled steel tube columns against BLAST loads [J]. Thin-Walled Structures, 2015, 92: 82–92. DOI: https://doi.org/10.1016/j.tws.2015.02.020.

    Article  Google Scholar 

  23. LI Xi-bing, WENG Lei. Numerical investigation on fracturing behaviors of deep-buried opening under dynamic disturbance [J]. Tunnelling and Underground Space Technology, 2016, 54: 61–72. DOI: https://doi.org/10.1016/j.tust.2016.01.028.

    Article  Google Scholar 

  24. LI Di-yuan, XIAO Peng, HAN Zhen-yu, et al. Mechanical and failure properties of rocks with a cavity under coupled static and dynamic loads [J]. Engineering Fracture Mechanics, 2020, 225: 106195. DOI: https://doi.org/10.1016/j.engfracmech.2018.10.021.

    Article  Google Scholar 

  25. LIU Jing-bo, LI Bin. A unified viscous-spring artificial boundary for 3-D static and dynamic applications [J]. Science in China Series E: Engineering & Materials Science, 2005, 48(5): 570–584. DOI: https://doi.org/10.1360/04ye0362.

    Article  MATH  Google Scholar 

  26. LI Xi-bing, FENG Fan, LI Di-yuan. Numerical simulation of rock failure under static and dynamic loading by splitting test of circular ring [J]. Engineering Fracture Mechanics, 2018, 188: 184–201. DOI: https://doi.org/10.1016/j.engfracmech.2017.08.022.

    Article  Google Scholar 

  27. QIAN Xi-kun, LIANG Zheng-zhao, LIAO Zhi-yi, et al. Numerical investigation of dynamic fracture in rock specimens containing a pre-existing surface flaw with different dip angles [J]. Engineering Fracture Mechanics, 2020, 223: 106675. DOI: https://doi.org/10.1016/j.engfracmech.2019.106675.

    Article  Google Scholar 

  28. HAN Hao-yu, FUKUDA D, LIU Hong-yuan, et al. FDEM simulation of rock damage evolution induced by contour blasting in the bench of tunnel at deep depth [J]. Tunnelling and Underground Space Technology, 2020, 103: 103495. DOI: https://doi.org/10.1016/j.tust.2020.103495.

    Article  Google Scholar 

  29. ZHU W C, LI Z H, ZHU L, et al. Numerical simulation on rockburst of underground opening triggered by dynamic disturbance [J]. Tunnelling and Underground Space Technology, 2010, 25(5): 587–599. DOI: https://doi.org/10.1016/j.tust.2010.04.004.

    Article  Google Scholar 

  30. JIA Peng, ZHU Wan-cheng. Dynamic-static coupling analysis on rockburst mechanism in jointed rock mass [J]. Journal of Central South University, 2012, 19(11): 3285–3290. DOI: https://doi.org/10.1007/s11771-012-1405-7.

    Article  Google Scholar 

  31. WU Ming-xin, ZHANG Chu-han, CHEN Zhen-fu. Study on the direct tensile, splitting and flexure strengths of concrete [J]. Journal of Hydraulic Engineering, 2015. DOI: https://doi.org/10.13243/j.cnki.slxb.2. (in Chinese)

  32. FAKHIMI A, CARVALHO F, ISHIDA T, et al. Simulation of failure around a circular opening in rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(4): 507–515. DOI: https://doi.org/10.1016/S1365-1609(02)00041-2.

    Article  Google Scholar 

  33. BAI Yu, ZHU Wan-cheng, WEI Chen-hui, et al. Numerical simulation on two-hole blasting under different in situ stress conditions [J]. Rock and Soil Mechanics, 2013, 34(S1): 466–471. DOI: https://doi.org/10.16285/j.rsm.2013.s1.021. (in Chinese)

    Google Scholar 

  34. ZHANG Feng-peng, PENG Jian-yu, ZHANG Xin, et al. Numerical simulation of the effect of in situ stress on rock blasting [J]. Metal Mine, 2015(12): 15–18. (in Chinese)

  35. ZHANG Feng-peng, PENG Jian-yu, FAN Guang-hua, et al. Mechanisms of blasting-induced rock fractures under different static stress and joint properties conditions [J]. Rock and Soil Mechanics, 2016, 37(7): 1839–1846, 1913. DOI: https://doi.org/10.16285/j.rsm.2016.07.003. (in Chinese)

    Google Scholar 

  36. TANG C A, LIN P, WONG R H C, et al. Analysis of crack coalescence in rock-like materials containing three flaws—Part II: Numerical approach [J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 925–939. DOI: https://doi.org/10.1016/S1365-1609(01)00065-X.

    Article  Google Scholar 

  37. TANG Chun-an, YANG Yue-feng. Crack branching mechanism of rock-like quasi-brittle materials under dynamic stress [J]. Journal of Central South University, 2012, 19(11): 3273–3284. DOI: https://doi.org/10.1007/s11771-012-1404-8.

    Article  Google Scholar 

  38. ZHAO J, LI H B. Experimental determination of dynamic tensile properties of a granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5): 861–866. DOI: https://doi.org/10.1016/S1365-1609(00)00015-0.

    Article  Google Scholar 

  39. ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: https://doi.org/10.1007/s00603-013-0463-y.

    Article  Google Scholar 

  40. SI Xue-feng, GONG Feng-qiang, LI Xi-bing, et al. Dynamic Mohr-Coulomb and Hoek-Brown strength criteria of sandstone at high strain rates [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 115: 48–59. DOI: https://doi.org/10.1016/j.ijrmms.2018.12.013.

    Article  Google Scholar 

  41. QI Chen-zhi, QIAN Qi-hu. Physical mechanism of dependence of material strength on strain rate for rock-like material [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 24(1): 97–110. DOI: https://doi.org/10.1142/S0252959903000104.

    Google Scholar 

  42. ZHAO J. Applicability of Mohr-Coulomb and Hoek-Brown strength criteria to the dynamic strength of brittle rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(7): 1115–1121. DOI: https://doi.org/10.1016/S1365-1609(00)00049-6.

    Article  Google Scholar 

  43. ZHENG Chao, ZHANG Jian-hai. SSOR-PCG method used in simulation of geotechnical engineering with finite element method [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(s1): 2820–2826. DOI: https://doi.org/10.3321/j.issn:1000-6915.2007.z1.035.

    Google Scholar 

  44. YANG Xin, PU Chuan-jin, TANG Xiong, et al. Experimental study of effects of manual crack on blasting cracks propagation [J]. Blasting, 2014, 31(2): 26–31. DOI: https://doi.org/10.3963/j.issn.1001-487X.2014.02.006.

    Google Scholar 

  45. YUE Zhong-wen, HU Qing-wen, CHEN Biao. An experimental study of the interaction between the blast-induced crack and the bedding defect [J]. Journal of Vibration and Shock, 2017, 36(12): 99–104. DOI: https://doi.org/10.13465/j.cnki.jvs.2017.12.017. (in Chinese)

    Google Scholar 

  46. LAJTAI E Z, LAJTAI V N. The collapse of cavities [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1975, 12(4): 81–86. DOI: https://doi.org/10.1016/0148-9062(75)90001-7.

    Article  Google Scholar 

  47. WANG Yan-bing. Study of the dynamic fracture effect using slotted cartridge decoupling charge blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 96: 34–46. DOI: https://doi.org/10.1016/j.ijrmms.2017.04.015.

    Article  Google Scholar 

  48. WEI Chen-hui, ZHU Wan-cheng, BAI Yu, et al. Numerical simulation on two-hole blasting of rock under different joint angles and in-situ stress conditions [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 926–935. DOI: https://doi.org/10.6052/0459-1879-15-259.

    Google Scholar 

Download references

Funding

Projects(51878190, 51779031, 51678170) supported by the National Natural Science Foundation of China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-kun Qian  (钱希坤).

Additional information

Contributors

LIANG Zheng-zhao provided the concept and edited the draft of manuscript. ZHANG Ya-fang conducted the literature review and wrote the first draft of the manuscript. QIAN Xi-kun edited the draft of manuscript. LIAO Zhi-yi established the numerical models and processed the numerical results. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

LIANG Zheng-zhao, ZHANG Ya-fang, QIAN Xi-kun and LIAO Zhi-yi declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Zz., Qian, Xk., Zhang, Yf. et al. Numerical simulation of dynamic fracture properties of rocks under different static stress conditions. J. Cent. South Univ. 29, 624–644 (2022). https://doi.org/10.1007/s11771-022-4903-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4903-2

Key words

关键词

Navigation