Skip to main content
Log in

Corrosion damage evolution and mechanical properties of carbon fiber reinforced aluminum laminate

碳纤维增强铝合金层板的腐蚀损伤演变与力学性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Fiber metal laminates (FMLs), a kind of lightweight material with excellent comprehensive performance, have been successfully applied in aerospace. FMLs reinforced with carbon fiber have better mechanical properties than those with glass or aramid fiber. However, carbon fiber binding metal may lead to galvanic corrosion which limits its application. In this paper, electrochemical methods, optical microscope and scanning electron microscope were used to analyze the corrosion evolution of carbon fiber reinforced aluminum laminate (CARALL) in corrosive environment and explore anti-corrosion ways to protect CARALL. The results show that the connection between carbon fiber and aluminum alloy changes electric potential, causing galvanic corrosion. The galvanic corrosion will obviously accelerate CARALL corroded in solution, leading to a 72.1% decrease in interlaminar shear strength, and the crevice corrosion has a greater impact on CARALL resulting in delamination. The reduction of interlaminar shear strength has a similar linear relationship with the corrosion time. In addition, the adhesive layers between carbon fiber and aluminum alloy cannot protect CARALL, while side edge protection can effectively slow down corrosion rate. Therefore, the exposed edges should be coated with anti-corrosion painting. CARALL has the potential to be used for aerospace components.

摘要

纤维金属层板是一种综合性能优异的轻量化材料, 已经成功地应用于航空航天领域。其中, 使 用碳纤维增强的纤维金属层板比采用玻璃纤维或芳纶纤维的层板具有更好的力学性能。然而, 碳纤维 与金属的结合容易引起电偶腐蚀, 极大地限制了其应用。本文采用电化学方法、光学显微镜和扫描电 子显微镜等分析了碳纤维增强铝合金层板在腐蚀环境中的腐蚀演变, 探讨了防止碳纤维增强铝合金层 板发生腐蚀的保护方法。结果表明, 碳纤维与铝合金的连接改变了电位从而引起电偶腐蚀, 电偶腐蚀 会明显导致碳纤维增强铝合金层板的腐蚀速度变快, 导致层间剪切强度下降达到72.1%; 同时, 缝隙 腐蚀也对层板的影响很大从而引起分层破坏。层间剪切强度的下降与腐蚀时间呈现出类似线性的关 系。此外, 碳纤维与铝合金之间的粘接层并不能起到保护作用, 而侧边保护却可以有效地减缓层板腐 蚀速度。因此, 碳纤维增强铝合金层板应该在裸露的边部涂上防腐涂料。该材料有潜力用于航空航天 部件。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. VLOT A, GUNNINK J W. Fibre metal laminates [M]. Netherlands: Kluwer Academic Publishers, 2001. ISBN: 978-1-4020-0038-6.

    Book  Google Scholar 

  2. SADIGHI M, ALDERLIESTEN R C, BENEDICTUS R. Impact resistance of fiber-metal laminates: A review [J]. International Journal of Impact Engineering, 2012, 49: 77–90. DOI: https://doi.org/10.1016/j.ijimpeng.2012.05.006.

    Article  Google Scholar 

  3. DADEJ K, BIENIAS J, SUROWSKA B. On the effect of glass and carbon fiber hybridization in fiber metal laminates: Analytical, numerical and experimental investigation [J]. Composite Structures, 2019, 220: 250–260. DOI: https://doi.org/10.1016/j.compstruct.2019.03.051.

    Article  Google Scholar 

  4. CHEN Y, WANG Y, WANG H. Research progress on interlaminar failure behavior of fiber metal laminates [J]. Advances in Polymer Technology, 2020, 4(5): 1–20. DOI: https://doi.org/10.1155/2020/3097839.

    Google Scholar 

  5. CHANDRASEKAR M, ISHAK M R, JAWAID M, LEMAN Z, SAPUAN S M. An experimental review on the mechanical properties and hygrothermal behaviour of fibre metal laminates [J]. Journal of Reinforced Plastics and Composites, 2016, 36(1): 72–82. DOI: https://doi.org/10.1177/0731684416668260.

    Article  Google Scholar 

  6. JAKUBCZAK P, BIENIAŚ J, SUROWSKA B. The influence of fibre orientation in aluminium-carbon laminates on low-velocity impact resistance [J]. Journal of Composite Materials, 2018, 52(8): 1005–1016. DOI: https://doi.org/10.1177/0021998317719569.

    Article  Google Scholar 

  7. SHI Y, PINNA C, SOUTIS C. Impact damage characteristics of carbon fibre metal laminates: Experiments and simulation [J]. Applied Composite Materials, 2020, 27(5): 511–531. DOI: https://doi.org/10.1007/s10443-020-09800-y.

    Article  Google Scholar 

  8. DHALIWAL G S, NEWAZ G M. Modeling low velocity impact response of carbon fiber reinforced aluminum laminates (CARALL) [J]. Journal of Dynamic Behavior of Materials, 2016, 2(2): 181–193. DOI: https://doi.org/10.1007/s40870-016-0057-3.

    Article  Google Scholar 

  9. DADEJ K, BIENIAŚ J, SUROWSKA B. Residual fatigue life of carbon fibre aluminium laminates [J]. International Journal of Fatigue, 2017, 100: 94–104. DOI: https://doi.org/10.1016/j.ijfatigue.2017.03.026.

    Article  Google Scholar 

  10. GUPTA R, MAHATO A, BHATTACHARYA A. Strength and failure behavior of carbon fiber reinforced aluminum laminates under flexural loading [J]. Mechanics of Advanced Materials and Structures, 2020. DOI: https://doi.org/10.1080/15376494.2020.1786754.

  11. ASGHAR W, NASIR M A, QAYYUM F, SHAH M, AZEEM M, NAUMAN S, KHUSHNOOD S. Investigation of fatigue crack growth rate in CARALL, ARALL and GLARE [J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(7): 1086–1100. DOI: https://doi.org/10.1111/ffe.12566.

    Article  Google Scholar 

  12. VERMEEREN C A J R. The application of carbon fibres in ARALL laminates [D]. Delft: Delft University of Technology, 1991: 1–62. https://repository.tudelft.nl/islandora/object/uuid:e14663a0-6fe6-499d-b5dd-22e56ac8f127.

    Google Scholar 

  13. SHAN M, GUO K, GOU G, FU Z, YANG B, LU W. Effect of anodizing on galvanic corrosion behavior of T300 CFRP/5083P-O Al bolted joints [J]. Materials and Corrosion, 2020, 71(3): 409–418. DOI: https://doi.org/10.1002/maco.201911235.

    Article  Google Scholar 

  14. HÅKANSSON E, HOFFMAN J, PREDECKI P, KUMOSA M. The role of corrosion product deposition in galvanic corrosion of aluminum/carbon systems [J]. Corrosion Science, 2016, 114: 10–16. DOI: https://doi.org/10.1016/j.corsci.2016.10.011.

    Article  Google Scholar 

  15. LI Sheng-xi, KHAN H A, HIHARA L H, CONG Hong-bo, LI Jing-jing. Corrosion behavior of friction stir blind riveted Al/CFRP and Mg/CFRP joints exposed to a marine environment [J]. Corrosion Science, 2018, 132: 300–309. DOI: https://doi.org/10.1016/j.corsci.2018.01.005.

    Article  Google Scholar 

  16. PENG Z, NIE X. Galvanic corrosion property of contacts between carbon fiber cloth materials and typical metal alloys in an aggressive environment [J]. Surface & Coatings Technology, 2013, 215(4): 85–89. DOI: https://doi.org/10.1016/j.surfcoat.2012.08.098.

    Article  Google Scholar 

  17. VOGELESANG L B, VLOT A. Development of fibre metal laminates for advanced aerospace structures [J]. Journal of Materials Processing Technology, 2000, 103(1): 1–5. DOI: https://doi.org/10.1016/s0924-0136(00)00411-8.

    Article  Google Scholar 

  18. WANG Wen-xue, TAKAO Y, MATSUBARA T. Galvanic corrosion-resistant carbon fiber metal laminates [C]//The 16th International Conference on Composite Material. 2007: 1–10. http://iccmcentral.org/Proceedings/ICCM16proceedings/contents/pdf/WedK/WeKM105ge_wangw224701p.pdf.

  19. BIENIAS J, ANTOLAK C, JAKUBCZK P, MAJERSKI K, SUROWSKA B. Corrosion studies of selected fiber meatal laminates with carbon and glass fibers [C]//The 19th International Conference on Composite Materials. 2013: 1–2. http://confsys.encs.concordia.ca/ICCM19/AllPapers/FinalVersion/SUR81670.pdf.

  20. MONDAL J, MARQUES A, AARIK L, KOZLOVA J, SIMOE A, SAMMELSELG V. Development of a thin ceramic-graphene nanolaminate coating for corrosion protection of stainless steel [J]. Corrosion Science, 2016, 105: 161–169. DOI: https://doi.org/10.1016/j.corsci.2016.01.013.

    Article  Google Scholar 

  21. WANG Yun-yan, LUO Yong-jian, XU Hui, XIAO Hai-juan. Corrosion behavior and electrochemical property of Q235A steel in treated water containing halide ions (FCl) from nonferrous industry [J]. Journal of Central South University, 2020, 27(4): 1224–1234. DOI: https://doi.org/10.1007/s11771-020-4362-6.

    Article  Google Scholar 

  22. ZHANG P, NIE X, NORTHWOOD D O. Influence of coating thickness on the galvanic corrosion properties of mg oxide in an engine coolant [J]. Surface and Coatings Technology, 2009, 203(20): 3271–3277. DOI: https://doi.org/10.1016/j.surfcoat.2009.04.012.

    Article  Google Scholar 

  23. HE Jia-jia, YAN Hong, ZOU Yong-cheng, YU Bao-biao, HU Zhi. Microstructure and corrosion behavior of as-cast ADC12 alloy with rare earth Yb addition and hot extrusion [J]. Journal of Central South University, 2020, 27(6): 1654–1665. DOI: https://doi.org/10.1007/s11771-020-4397-8.

    Article  Google Scholar 

  24. CHARITHA B P, RAO P. Pullulan as a potent green inhibitor for corrosion mitigation of aluminum composite: Electrochemical and surface studies [J]. International Journal of Biological Macromolecules, 2018, 112: 461–472. DOI: https://doi.org/10.1016/j.ijbiomac.2018.01.218.

    Article  Google Scholar 

  25. SEE S C, ZHANG Z Y, RICHARDSON M. A study of water absorption characteristics of a novel nano-gelcoat for marine application [J]. Progress in Organic Coatings, 2009, 65(2): 169–174. DOI: https://doi.org/10.1016/j.porgcoat.2008.11.004.

    Article  Google Scholar 

  26. SCHEM M, SCHMIDT T, GERWANN J, WITTMAR M, VEITH M, THOMPSON G E, MOLCHAN I S, HASHIMOTO T, SKELDON P, PHANI A R, SANTUCCI S, ZHELUDKEVICH M L. Ceo-filled sol-gel coatings for corrosion protection of AA2024-T3 aluminium alloy [J]. Corrosion Science, 2009, 51(10): 2304–2315. DOI: https://doi.org/10.1016/j.corsci.2009.06.007.

    Article  Google Scholar 

  27. WANG Xue-hui, WANG Ji-hui, YUE Xin, GAO Yun. Effect of aging treatment on the exfoliation corrosion and stress corrosion cracking behaviors of 2195 Al-Li alloy [J]. Materials and Design, 2015, 67: 596–605. DOI: https://doi.org/10.1016/j.matdes.2014.11.007.

    Article  Google Scholar 

  28. LI B, PAN Q L, ZHANG Z Y, LI C. Research on intercrystalline corrosion, exfoliation corrosion, and stress corrosion cracking of Al-Zn-Mg-Sc-Zr alloy [J]. Materials & Corrosion, 2014, 64(7): 592–598. DOI: https://doi.org/10.1002/maco.201206727.

    Article  Google Scholar 

  29. LI Shuai, GUO Dan, DONG Hong-gang. Effect of flame rectification on corrosion property of Al-Zn-Mg alloy [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(2): 250–257. DOI: https://doi.org/10.1016/S1003-6326(17)60029-3.

    Article  Google Scholar 

  30. ZHANG Jun-long, LI Jing-yuan, TIAN Shao-kun, LV Dan. Effects of solution treatment on microstructure transformation, tensile and exfoliation corrosion properties of 7136 aluminum alloy [J]. Journal of Materials Engineering and Performance, 2019, 28: 1312–1323. DOI: https://doi.org/10.1007/s11665-019-03893-8.

    Article  Google Scholar 

  31. LIU Sheng-dan, LIAO Wen-bo, TANG Jian-guo, ZHANG Xin-ming, LIU Xin-yu. Influence of exfoliation corrosion on tensile properties of a high strength Al-Zn-Mg-Cu alloy [J]. Journal of Central South University, 2013, 20(1): 1–6. DOI: https://doi.org/10.1007/s11771-013-1451-9.

    Article  Google Scholar 

  32. ZHAO Jing-wei, LUO Bing-hui, HE Ke-jian, BAI Zhen-hai, LI Bin, CHEN Wei. Effects of minor Zn content on microstructure and corrosion properties of Al-Mg alloy [J]. Journal of Central South University, 2016, 23(12): 3051–3059. DOI: https://doi.org/10.1007/s11771-016-3368-6.

    Article  Google Scholar 

  33. ZHANG Teng, HE Yu-ting, CUI Rong-hong, AN Tao. Long-term atmospheric corrosion of aluminum alloy 2024-T4 in a coastal environment [J]. Journal of Materials Engineering and Performance, 2015, 24(7): 2764–2773. DOI: https://doi.org/10.1007/s11665-015-1541-y.

    Article  Google Scholar 

  34. COMEZ N, DURMUS H. Corrosion behavior and mechanical properties of cold metal transfer welded dissimilar AA7075-AA5754 alloys [J]. Journal of Central South University, 2020, 27(1): 18–26. DOI: https://doi.org/10.1007/s11771-020-4274-5.

    Article  Google Scholar 

  35. ANDRZEJ K, TOMASZ T, MARIUSZ K, MAREK H, MACIEJ P. The influence of temperature gradient thermal shock cycles on the interlaminar shear strength of fibre metal laminate composite determined by the short beam test [J]. Composites Part B: Engineering, 2019, 176: 1–7. DOI: https://doi.org/10.1016/j.compositesb.2019.107217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-hua Zhan  (湛利华).

Additional information

Foundation item

Project(51675538) supported by the National Natural Science Foundation of China

Contributors

The overarching research goals were developed by WU Xin-tong, ZHAN Li-hua and HUANG Ming-hui. WU Xin-tong and ZHAO Guo-qing measured and analyzed the data. The initial draft of the manuscript was written by WU Xin-tong and WANG Xun. ZHAO Xing edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

WU Xin-tong, ZHAN Li-hua, HUANG Ming-hui, ZHAO Xing, WANG Xun and ZHAO Guo-qing declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Xt., Zhan, Lh., Huang, Mh. et al. Corrosion damage evolution and mechanical properties of carbon fiber reinforced aluminum laminate. J. Cent. South Univ. 28, 657–668 (2021). https://doi.org/10.1007/s11771-021-4635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4635-8

Key words

关键词

Navigation