Skip to main content
Log in

Extraction of Cd and Pb from contaminated-paddy soil with EDTA, DTPA, citric acid and FeCl3 and effects on soil fertility

EDTA、DTPA、柠檬酸和FeCl3 对污染稻田土壤镉铅的去除及土壤肥力的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Potentially toxic metals, Cd and Pb in paddy soil, have important meanings for safety of rice. A comparison extraction of Cd and Pb with EDTA, DTPA, citric acid, and FeCl3 and effects on soil fertility was studied. Results indicate that about 59% and 63% of soil Cd and Pb were simultaneously removed by 10 g/L EDTA at pH 5 with a soil/extractant ratio of 1:10 (W/V) for 30 min while 52% and 51% by 5 g/L DTPA. Acid extractable and reducible Cd by EDTA and DTPA contributed 58% and 53% of the removals and acid extractable and reducible Pb were about 49% and 41%, respectively. Slight changes of soil fertility, including pH, cation exchange capacity, organic matter, and soil extractable phosphorus, were observed. Extractions of citric acid and ferric chloride, however, were only efficient for Cd and the soil pH was decreased significantly. This study suggests that EDTA and DTPA can be considered as suitable agents to clean up the paddy soils contaminated with potentially toxic metals.

摘要

潜在有害金属镉和铅对水稻的安全生产有着重要意义. 本文对比研究了EDTA、DTPA、柠檬酸和FeCl3 对镉和铅的去除能力以及对土壤肥力的影响. 结果表明, 选取固液比1:10 振荡30 min 用10 g/L EDTA(pH 5)可去除59% Cd 和 63% Pb, 而在同等条件下, 5 g/L DTPA 可去除52% Cd 和51%Pb. EDTA 的土壤淋出液含58%酸可提取态和可还原态Cd, 49%酸可提取态和可还原态Pb, DTPA 淋出液中含53%和41%. 土壤pH 值、阳离子交换量、有机质、土壤有效磷变化较小. 而柠檬酸和氯化铁仅对Cd 淋洗有效, 且淋洗后土壤pH 值下降显著. 研究表明EDTA 和DTPA 可以作为潜在有害金属污染稻田土壤净化的合适淋洗剂.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CALISI A, ZACCARELLI N, LIONETTO M G, SCHETTINO T. Integrated biomarker analysis in the earthworm Lumbricus terrestris: Application to the monitoring of soil heavy metal pollution [J]. Chemosphere, 2013, 90(11): 2637–2644. DOI: https://doi.org/10.1016/j.chemosphere.2012.11.040.

    Article  Google Scholar 

  2. YANG Sheng-xiang, LIAO Bin, YANG Zhi-hui, CHAI Li-yuan, LI Jin-tian. Revegetation of extremely acid mine soils based on aided phytostabilization: A case study from southern China [J]. Science of the Total Environment, 2016, 562: 427–34. DOI: https://doi.org/10.1016/j.scitotenv.2016.03.208.

    Article  Google Scholar 

  3. LIU Ya-nan, GUO Zhao-hui, XIAO Xi-yuan, WANG Shuo, JIANG Zhi-chao, ZENG Peng. Phytostabilisation potential of giant reed for metals contaminated soil modified with complex organic fertiliser and fly ash: A field experiment [J]. Science of the Total Environment, 2017, 576: 292–302. DOI: https://doi.org/10.1016/j.scitotenv.2016.10.065.

    Article  Google Scholar 

  4. ZHAO Fang-jie, MA Yi-bing, ZHU Yong-guan, TANG Zhong, MCGRATH S P. Soil contamination in China: Current status and mitigation strategies [J]. Environment Science and Technology, 2015, 49(2): 750–759. DOI: https://doi.org/10.1021/es5047099.

    Article  Google Scholar 

  5. SHEORAN V, SHEORAN A S, POONIA P. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: A review [J]. Critical Reviews in Environmental Science and Technology, 2011, 2(41): 168–214. DOI: https://doi.org/10.1080/10643380902718418.

    Google Scholar 

  6. HAZRAT A, EZZAT K, MUHAMMAD A S. Phytoremediation of heavy metals: Concepts and applications [J]. Chemosphere, 2013, 91(7): 869–881. DOI: https://doi.org/10.1016/j.chemosphere.2013.01.075.

    Article  Google Scholar 

  7. ABUMAIZAR R J, SMITH E H. Heavy metal contaminants removal by soil washing [J]. Journal of Hazardous Materials, 1999, B70: 71–86. DOI: https://doi.org/10.1016/S0304-3894(99)00149-1.

    Article  Google Scholar 

  8. PETERS R W. Chelant extraction of heavy metals from contaminated soils [J]. Journal of Hazardous Materials, 1999, 66: 151–210. DOI: https://doi.org/10.1016/S0304-3894(99)00010-2.

    Article  Google Scholar 

  9. LESTAN D, LUO Chun-ling, LI Xiang-dong. The use of chelating agents in the remediation of metal-contaminated soils: A review [J]. Environmental Pollution, 2008, 153: 3–13. DOI: https://doi.org/10.1016/j.envpol.2007.11.015.

    Article  Google Scholar 

  10. GUO Xiao-fang, WEI Ze-bin, WU Qi-tang, LI Chun-ping, QIAN Tian-wei, ZHENG Wei. Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: Field experiments [J]. Chemosphere, 2016, 147: 412–419. DOI: https://doi.org/10.1016/j.chemosphere.2015.12.087.

    Article  Google Scholar 

  11. PAKZADEH B, BATISTA J R. Surface complexation modeling of the removal of arsenic from ion-exchange waste brines with ferric chloride [J]. Journal of Hazardous Materials, 2011, 188: 399–407. DOI: https://doi.org/10.1016/j.jhazmat.2011.01.117.

    Article  Google Scholar 

  12. WEN Jia, STACEY S P, MCLAUGHLIN M J, KIRBY J K. Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils [J]. Soil Biology and Biochemistry, 2009, 41(10): 2214–2221. DOI: https://doi.org/10.1016/j.soilbio.2009.08.006.

    Article  Google Scholar 

  13. JIANG Jian-guo, YANG Meng, GAO Yu-chen, WANG Jia-ming, LI De-an, LI Tian-ran. Removal of toxic metals from vanadium-contaminated soils using a washing method: Reagent selection and parameter optimization [J]. Chemosphere, 2017, 180: 295–301. DOI: https://doi.org/10.1016/j.chemosphere.2017.03.116.

    Article  Google Scholar 

  14. WEI Meng, CHEN Jia-jun, WANG Xing-wei. Removal of arsenic and cadmium with sequential soil washing techniques using Na2EDTA, oxalic and phosphoric acid: Optimization conditions, removal effectiveness and ecological risks [J]. Chemosphere, 2016, 156: 252–261. DOI: https://doi.org/10.1016/j.chemosphere.2016.04.106.

    Article  Google Scholar 

  15. UDOVIC M, LESTAN D. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: Remediation efficiency and soil impact [J]. Chemosphere, 2012, 88(6): 718–724. DOI: https://doi.org/10.1016/j.chemosphere.2012.04.040.

    Article  Google Scholar 

  16. ZHANG Shu-juan, YANG Zhi-hui, WU Bao-lin, WANG Yang-yang, WU Rui-ping, LIAO Ying-ping. Removal of Cd and Pb in calcareous soils by using Na2EDTA recycling washing [J]. Clean-Soil, Air, Water, 2014, 42(5): 641–647. DOI: https://doi.org/10.1002/clen.201200634.

    Article  Google Scholar 

  17. DENG Tian-lin, ZHANG Bing-ru, LI Feng-ting, JIN Lu-yao. Sediment washing by EDTA and its reclamation by sodium polyamidoamine-multi dithiocarbamate [J]. Chemosphere, 2017, 168: 450–456. DOI: https://doi.org/10.1016/j.chemosphere.2016.09.152.

    Article  Google Scholar 

  18. MODIBA P, MATOETOE M, CROUCH A M. Kinetics study of transition metal complexes (Ce—DTPA, Cr—DTPA and V—DTPA) for redox flow battery applications [J]. Electrochimica Acta, 2013, 94: 336–343. DOI: https://doi.org/10.1016/j.electacta.2013.01.081.

    Article  Google Scholar 

  19. REN Jie, WANG Feng-hua, ZHAI Yun-bo, ZHU Yun, PENG Chuan, WANG Teng-fei, LI Cai-ting, ZENG Guang-ming. Effect of sewage sludge hydrochar on soil properties and Cd immobilization in a contaminated soil [J]. Chemosphere, 2017, 189: 627–633. DOI: https://doi.org/10.1016/j.chemosphere.2017.09.102.

    Article  Google Scholar 

  20. UDOVIC M, LESTAN D. Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching Pb [J]. Chemosphere, 2009, 74(10): 1367–1373. DOI: https://doi.org/10.1016/j.chemosphere.2008.11.013.

    Article  Google Scholar 

  21. REN Xiang-hao, YAN Rui, WANG Hong-cheng, KOU Ying-ying, CHAE K J, KIM I S, PARK Y J, WANG A J. Citric acid and ethylenediaminetetraacetic acid as effective washing agents to treat sewage sludge for agricultural reuse [J]. Waste Management, 2015, 46: 440–448. DOI: https://doi.org/10.1016/j.wasman.2015.07.021.

    Article  Google Scholar 

  22. MAKINO T, TAKANO H, KAMIYA T, ITOU T, SEKIYA N, INAHARA M, SAKURAI Y. Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification [J]. Chemosphere, 2008, 70(6): 1035–1043. DOI: https://doi.org/10.1016/j.chemosphere.2007.07.080.

    Article  Google Scholar 

  23. DERMONT G, BERGERON M, MERCIE R G, RICHER-LAFLÈCHE M. Soil washing for metal removal: A review of physical/chemical technologies and field applications [J]. Journal of Hazardous Materials, 2008, 152(1): 1–31. DOI: https://doi.org/10.1016/j.jhazmat.2007.10.043.

    Article  Google Scholar 

  24. KIM E J, LEE J, BAEK K. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: Arsenic extraction by reducing agents and combination of reducing and chelating agents [J]. Journal of Hazardous Materials, 2015, 283: 454–461. DOI: https://doi.org/10.1016/j.jhazmat.2014.09.055.

    Article  Google Scholar 

  25. IM J, YANG K, JHO E H, NAM K. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties [J]. Chemosphere, 2015, 138: 253–258. DOI: https://doi.org/10.1016/j.chemosphere.2015.06.004.

    Article  Google Scholar 

  26. LIU Cheng-chung, LIN Ying-chen. Reclamation of copper-contaminated soil using EDTA or citric acid coupled with dissolved organic matter solution extracted from distillery sludge [J]. Environmental Pollution, 2013, 178: 97–101. DOI: https://doi.org/10.1016/j.envpol.2013.02.034.

    Article  Google Scholar 

  27. RODRÍGUEZ-JORDÁ M P, GARRIDO F, GARCÍA-GONZÁLEZ M T. Potential use of gypsum and lime rich industrial by-products for induced reduction of Pb, Zn and Ni leachability in an acid soil [J]. Journal of Hazardous Materials, 2010, 175(1–3): 762–769. DOI: https://doi.org/10.1016/j.jhazmat.2009.10.074.

    Article  Google Scholar 

  28. ÜNVER I, MADENOĞLU S, DILSIZ A, NAMLI A. Influence of rainfall and temperature on DTPA extractable nickel content of serpentine soils in Turkey [J]. Geoderma, 2013, 202–203: 203–211. DOI: https://doi.org/10.1016/j.geoderma.2013.03.025.

    Article  Google Scholar 

  29. PANSU M, GAUTHEYROU J. Handbook of soil analysis: Mineralogical, organic and inorganic methods [M]. Berlin, Heidelberg: Springer-Verlag, 2006. DOI: https://doi.org/10.1007/978-3-540-31211-6.

    Book  Google Scholar 

  30. RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQILLO A, RUBIO R, DAVIDSON C, URE A, QUEVAUVILLER P H. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials [J]. Journal of Environmental Monitoring, 1999, 1(1): 57–61. DOI: https://doi.org/10.1039/a807854h.

    Article  Google Scholar 

  31. LEI Ming, LIAO Bo-han, ZENG Qing-ru, QIN Pu-feng, KHAN S. Fraction distributions of lead, cadmium, copper, and zinc in metal-contaminated soil before and after extraction with disodium ethylenediaminetetraacetic acid [J]. Communications in Soil Science and Plant Analysis, 2008, 39: 1963–1978. DOI: https://doi.org/10.1080/00103620802134776.

    Article  Google Scholar 

  32. NORTH A E, SARPONG-KUMANKOMAH S, BELLAVIE A R, WHITE W M, GAILER J. Environmentally relevant concentrations of aminopolycarboxylate chelating agents mobilize Cd from humic acid [J]. Journal of Environmental Sciences, 2017, 57: 249–257. DOI: https://doi.org/10.1016/j.jes.2017.02.004.

    Article  Google Scholar 

  33. LI Yu-jiao, HU Peng-jie, ZHAO Jie, DONG Chang-xun. Remediation of cadmium- and lead-contaminated agricultural soil by composite washing with chlorides and citric acid [J]. Environmental Science and Pollution Research, 2015, 22(7): 5563–5571. DOI: https://doi.org/10.1007/s11356-014-3720-z.

    Article  Google Scholar 

  34. YOO J C, SHIN Y J, KIM E J, YANG J S, BAEK K. Extraction mechanism of lead from shooting range soil by ferric salts [J]. Process Safety and Environmental Protection, 2016, 103: 174–182. DOI: https://doi.org/10.1016/j.psep.2016.07.002.

    Article  Google Scholar 

  35. WANG Gui-yin, ZHANG Shi-rong, XU Xiao-xun, LI Ting, LI Yun, DENG Ou-ping, GONG Guo-shu. Efficiency of nanoscale zero-valent iron on the enhanced low molecular weight organic acid removal Pb from contaminated soil [J]. Chemosphere, 2014, 117: 617–624. DOI: https://doi.org/10.1016/j.chemosphere.2014.09.081.

    Article  Google Scholar 

  36. QUARTACCI M F, BAKER A J M, NAVARI-IZZO F. Nitrilotriacetate- and citric acid-assisted phytoextraction of cadmium by Indian mustard (Brassica juncea (L.) Czernj, Brassicaceae) [J]. Chemosphere, 2005, 59(9): 1249–1255. DOI: https://doi.org/10.1016/j.chemosphere.2004.11.053.

    Article  Google Scholar 

  37. EVANGELOU M W H, EBEL M, HOMMES G, SCHAEFFER A. Biodegradation: The reason for the inefficiency of small organic acids in chelant-assisted phytoextraction [J]. Water, Air and Soil Pollution, 2008, 195: 177–188. DOI: https://doi.org/10.1007/s11270-008-9738-4.

    Article  Google Scholar 

  38. ZHANG Hong-jiao, GAO Yun-tao, XIONG Hua-bin. Removal of heavy metals from polluted soil using the citric acid fermentation broth: A promising washing agent [J]. Environmental Science and Pollution Research, 2017, 24(10): 9506–9514. DOI: https://doi.org/10.1007/s11356-017-8660-y.

    Article  Google Scholar 

  39. CONTIN M, MALEV O, IZOSIMOVA A, NOBILI M D. Flocculation of sewage sludge with FeCl3 modifies the bioavailability of potentially toxic elements when added to different soils [J]. Ecological Engineering, 2015, 81: 278–288. DOI: https://doi.org/10.1016/j.ecoleng.2015.04.033.

    Article  Google Scholar 

  40. TANG Qiang, ZHOU Ting, GU Fan, WANG Yan, CHU Jia-ming. Removal of Cd(II) and Pb(II) from soil through desorption using citric acid: Kinetic and equilibrium studies [J]. Journal of Central South University, 2017, 24(9): 1941–1952. DOI: https://doi.org/10.1007/s11771-017-3602-x.

    Article  Google Scholar 

  41. WANG Gui-yin, ZHANG Shi-rong, XU Xiao-xun, ZHONG Qin-mei, ZHANG Chu-er, JIA Yong-xia, LI Ting, DENG Ou-ping, LI Yun. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility [J]. Science of the Total Environment, 2016, 569–570: 557–568. DOI: https://doi.org/10.1016/j.scitotenv.2016.06.155.

    Article  Google Scholar 

  42. QIU Rong-liang, ZOU Ze-li, ZHAO Zhi-hao, ZHANG Wei-hua, ZHANG Tao, DONG Han-ying, WEI Xian-ge. Removal of trace and major metals by soil washing with Na2EDTA and oxalate [J]. Journal of Soils and Sediments, 2010, 10(1): 45–53. DOI: https://doi.org/10.1007/s11368-009-0083-z.

    Article  Google Scholar 

  43. WANG Sen, WANG Zhao-hui, GAO Ya-jie, LIU Lu, YU Rong, JIN Jing-jing, LUO Lai-chao, HUI Xiao-li, LI Fu-cui, LI Meng-hua. EDTA alone enhanced soil zinc availability and winter wheat grain Zn concentration on calcareous soil [J]. Environmental and Experimental Botany, 2017, 141: 19–27. DOI: https://doi.org/10.1016/j.envexpbot.2017.06.008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-hui Guo  (郭朝晖).

Additional information

Foundation item: Project(2015BAD05B02) supported by the National Science and Technology Support Program, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, F., Guo, Zh., Men, Sh. et al. Extraction of Cd and Pb from contaminated-paddy soil with EDTA, DTPA, citric acid and FeCl3 and effects on soil fertility. J. Cent. South Univ. 26, 2987–2997 (2019). https://doi.org/10.1007/s11771-019-4230-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4230-4

Key words

关键词

Navigation