Skip to main content
Log in

Neuro-fuzzy systems in determining light weight concrete strength

神经模糊系统确定轻量化混凝土强度

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The adaptive neuro-fuzzy inference systems (ANFIS) are widely used in the concrete technology. In this research, the compressive strength of light weight concrete was determined. To this end, the scoria percentage and curing day variables were used as the input parameters, and compressive strength and tensile strength were used as the output parameters. In addition, 100 patterns were used, 70% of which were used for training and 30% were used for testing. To assess the precision of the neuro-fuzzy system, it was compared using two linear regression models. The comparisons were carried out in the training and testing phases. Research results revealed that the neuro-fuzzy systems model offers more potential, flexibility, and precision than the statistical models.

摘要

目前,自适应神经模糊推理系统(ANFIS)在混凝土技术中得到了广泛的应用。本研究利用神经 模糊系统确定了轻量化混凝土的抗压强度。以废渣百分率和固化天数作为网络的输入参数,以抗压强 度和抗拉强度作为输出参数。实验选用了100 个模式,其中70%用于训练,30%用于测试。为了评估 神经模糊系统的精度,比较了神经模糊系统和统计模型(LR)两种线性回归模型的训练和测试阶段。结 果表明,神经模糊系统模型比统计模型具有更大的潜力、适应性性和精度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RAZAVI S V, EI-SHAFIE A H, MOHAMMADI P. Artificial neural networks for mechanical strength prediction of lightweight mortar [J]. Sci Res Essays, 2011, 6(16): 3406–3417.

    Article  Google Scholar 

  2. TOPÇU I B, SARIDEMIR M. Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic [J]. Comput Mater Sci, 2008, 41(3): 305–311.

    Article  Google Scholar 

  3. ALSHIHRI M M, AZMY A M, EL-BISY M S. Neural networks for predicting compressive strength of structural light weight concrete [J]. Constr Build Mater, 2009, 23(6): 2214–2219.

    Article  Google Scholar 

  4. SARIDEMIR M, TOPÇU I B, ÖZCAN F, SEVERCAN M H. Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic [J]. Constr Build Mater, 2009, 23(3): 1279–1286.

    Article  Google Scholar 

  5. ÖZCAN F, ATIS C D, KARAHAN O, UNCUOGLU E, TANYILDIZI H. Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete [J]. Adv Eng Softw, 2009, 40(9): 856–863.

    Article  MATH  Google Scholar 

  6. SLONSKI M. A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks [J]. Comput Struct, 2010, 88(21): 1248–1253.

    Article  Google Scholar 

  7. MADANDOUST R, GHAVIDEL R, NARIMAN-ZADEH N. Evolutionary design of generalized GMDH-type neural network for prediction of concrete compressive strength using UPV [J]. Comput Mater Sci, 2010, 49(3): 556–567.

    Article  Google Scholar 

  8. SIDDIQUE R, AGGARWAL P, AGGARWAL Y. Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks [J]. Adv Eng Softw, 2011, 42(10): 780–786.

    Article  Google Scholar 

  9. CHENG M Y, CHOU J S, ROY A F V, WU Y W. High-performance concrete compressive strength prediction using time-weighted evolutionary fuzzy support vector machines inference model [J]. Autom Constr, 2012, 28: 106–115.

    Article  Google Scholar 

  10. ABOLPOUR B, ABOLPOUR B, ABOLPOUR R, BAKHSHI H. Estimation of concrete compressive strength by a fuzzy logic model [J]. Res Chem Intermed, 2013, 39(2): 707–719.

    Article  Google Scholar 

  11. DIAB A M, ELYAMANY H E, ABD ELMOATY A E M, SHALAN A H. Prediction of concrete compressive strength due to long term sulfate attack using neural network [J]. Alexandria Eng J, 2014, 53(3): 627–642.

    Article  Google Scholar 

  12. DESHPANDE N, LONDHE S, KULKARNI S. Modeling compressive strength of recycled aggregate concrete by artificial neural network, model tree and non-linear regression [J]. Int J Sustain Built Environ, 2014, 3(2): 187–198.

    Article  Google Scholar 

  13. SKRZYPCZAK I, BUDA-OZÓG L, PYTLOWANY T. Fuzzy method of conformity control for compressive strength of concrete on the basis of computational numerical analysis [J]. Meccanica, 2016, 51(2): 383–389.

    Article  Google Scholar 

  14. KHADEMI F, AKBARI M, JAMAL S M, NIKOO M. Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete [J]. Front Struct Civ Eng, 2017, 11(1): 90–99.

    Article  Google Scholar 

  15. NIKOO M, ZARFAM P, SAYAHPOUR H. Determination of compressive strength of concrete using self organization feature map (SOFM) [J]. Eng Comput, 2015, 31(1): 113–121.

    Article  Google Scholar 

  16. ASTERIS P G, ROUSSIS P C, DOUVIKA M G. Feed-forward neural network prediction of the mechanical properties of sandcrete materials [J]. Sensors, 2017, 17(6): 1–21.

    Article  Google Scholar 

  17. ASTERIS P G, CAVALERI L, TRAPANI F D, TSARIS A K. Numerical modelling of out-of-plane response of infilled frames: state of the art and future challenges for the equivalent strut macromodels [J]. Eng Struct, 2017, 132: 110–122.

    Article  Google Scholar 

  18. NIKOO M, SADOWSKI L, KHADEMI F, NIKOO M. Determination of damage in reinforced concrete frames with shear walls using self-organizing feature map [J]. Appl Comput Intell Soft Comput, 2017: 3508189.

    Google Scholar 

  19. JANG J S. ANFIS: Adaptive-network-based fuzzy inference system [J]. IEEE Trans Syst Man Cybern, 2002, 23(3): 665–685.

    Article  Google Scholar 

  20. KHADEMI F, JAMAL S M, DESHPANDE N, LONDHE S. Predicting strength of recycled aggregate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regression [J]. Int J Sustain Built Environ, 2016, 5(2): 355–369.

    Article  Google Scholar 

  21. ABDULSHAHED A M, LONGSTAFF A P, FLETCHER S. The application of ANFIS prediction models for thermal error compensation on CNC machine tools [J]. Appl Soft Comput, 2015, 27: 158–168.

    Article  Google Scholar 

  22. NIKOO M, ZARFAM P, NIKOO M. Determining displacement in concrete reinforcement building with using evolutionary artificial neural networks [J]. World Appl Sci J, 2012, 16(12): 1699–1708.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Vahid Razavi Tosee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavi Tosee, S.V., Nikoo, M. Neuro-fuzzy systems in determining light weight concrete strength. J. Cent. South Univ. 26, 2906–2914 (2019). https://doi.org/10.1007/s11771-019-4223-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4223-3

关键词

Key words

Navigation