Skip to main content
Log in

A review on application of nanofluid in various types of heat pipes

纳米流体在各种热管中的应用综述

  • Review
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Nanotechnology is widely used in heat transfer devices to improve thermal performance. Nanofluids can be applied in heat pipes to decrease thermal resistance and achieve a higher heat transfer capability. In the present article, a comprehensive literature review is performed on the nanofluids’ applications in heat pipes. Based on reviewed studies, nanofluids have a high capacity to boost the thermal behavior of various types of heat pipes such as conventional heat pipes, pulsating heat pipes, and thermosyphons. Besides, it is observed that there must be a selected amount of concentration for the high-performance utilization of nanoparticles; high concentration of nanoparticles causes a higher thermal resistance which is mainly attributed to increment in the dynamic viscosity and the higher possibility of particles’ agglomeration. Enhancement in heat transfer performance is the result of increasing in nucleation sites and the intrinsically greater nanofluids’ thermal conductivity.

摘要

纳米技术被广泛应用于传热装置中, 以提高热性能. 纳米流体应用于热管中, 可降低热管的热 阻, 提高热管的传热能力. 文中, 对纳米在流体热管中的应用进行了全面的综述. 阐述了纳米流体对 传统热管、脉动热管、热虹膜等各种类型热管的热性能的影响. 此外, 发现了纳米颗粒的高效利用必 须有一定的浓度; 因动力黏度的增加导致颗粒团聚的可能性越高, 高浓度的纳米颗粒会产生较高的热 阻. 热传递性能的增强是晶核位置的增多和纳米流体本身具有的更大热导率的结果.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MOHAMMADI A, AHMADI M H, BIDI M, JODA F, VALERO A, USON S. Exergy analysis of a combined cooling, heating and power system integrated with wind turbine and compressed air energy storage system [J]. Energy Convers Manag, 2017, 131: 69–78. DOI: https://doi.org/10.1016/j.enconman.2016.11.003.

    Article  Google Scholar 

  2. AHMADI M H, AHMADI M A, ABOUKAZEMPOUR E, GROSU L, POURFAYAZ F, BIDI M. Exergetic sustainability evaluation and optimization of an irreversible Brayton cycle performance [J]. Front Energy, 2017: 1–12. DOI: https://doi.org/10.1007/s11708-017-0445-y.

    Google Scholar 

  3. AHMADI M H, AFSHAR M A, NASERI A, BIDI M, HADIYANTO H. Modeling and PSO optimization of Humidifier-Dehumidifier desalination [J]. Int J Renew Energy Dev, 2017, 7: 59–64. DOI: https://doi.org/10.14710/ijred.7.1.59-64.

    Article  Google Scholar 

  4. AHMADI M H, AHMADI M A. Thermodynamic analysis and optimization of an irreversible Ericsson cryogenic refrigerator cycle [J]. Energy Convers Manag, 2015, 89: 147–155. DOI:https://doi.org/10.1016/j.enconman.2014.09.064.

    Article  Google Scholar 

  5. SADATSAKKAK S A, AHMADI M H, AHMADI M A. Thermodynamic and thermo-economic analysis and optimization of an irreversible regenerative closed Brayton cycle [J]. Energy Convers Manag, 2015, 94: 124–129. DOI: https://doi.org/10.1016/j.enconman.2015.01.040.

    Article  Google Scholar 

  6. ASHOURI M, ASTARAEI F R, GHASEMPOUR R, AHMADI M H, FEIDT M. Optimum insulation thickness determination of a building wall using exergetic life cycle assessment [J]. Appl Therm Eng, 2016, 106: 307–315. DOI: https://doi.org/10.1016/j.applthermaleng.2016.05.190.

    Article  Google Scholar 

  7. NOROOZIAN A, MOHAMMADI A, BIDI M, AHMADI M H. Energy, exergy and economic analyses of a novel system to recover waste heat and water in steam power plants [J]. Energy Convers Manag, 2017, 144: 351–360. DOI: https://doi.org/10.1016/j.enconman.2017.04.067.

    Article  Google Scholar 

  8. NASERI A, BIDI M, AHMADI M H. Thermodynamic and exergy analysis of a hydrogen and permeate water production process by a solar-driven transcritical CO2 power cycle with liquefied natural gas heat sink [J]. Renew Energy, 2017, 113: 1215–1228. DOI: https://doi.org/10.1016/j.renene.2017.06.082.

    Article  Google Scholar 

  9. MIRZAEI M, AHMADI M H, MOBIN M, NAZARI M A, ALAYI R. Energy, exergy and economics analysis of an ORC working with several fluids and utilizes smelting furnace gases as heat source [J]. Therm Sci Eng Prog, 2017, 5: 230–237. DOI: https://doi.org/10.1016/j.tsep.2017.11.011.

    Article  Google Scholar 

  10. AHMADI M H, AHMADI M A, POURFAYAZ F, BIDI M. Thermodynamic analysis and optimization for an irreversible heat pump working on reversed Brayton cycle [J]. Energy Convers Manag, 2016, 110: 260–267. DOI: https://doi.org/10.1016/j.enconman.2015.12.028.

    Article  Google Scholar 

  11. SADATSAKKAK S A, AHMADI M H, AHMADI M A. Optimization performance and thermodynamic analysis of an irreversible nano scale Brayton cycle operating with Maxwell–Boltzmann gas [J]. Energy Convers Manag, 2015, 101: 592–605. DOI: https://doi.org/10.1016/j.enconman.2015.06.004.

    Article  Google Scholar 

  12. SIAVASHI M, JAMALI M. Erratum to: Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow [J]. Journal of Central South University, 2017, 24(10): 2486. DOI: https://doi.org/10.1007/s11771-017-3660-0.

    Article  Google Scholar 

  13. YU Xiao-hui, ZHANG Yu-feng, ZHANG Yan, HE Zhong-lu, DONG Sheng-ming, MA Xue-lian, YAO Sheng. Intelligent prediction on performance of high-temperature heat pump systems using different refrigerants [J]. Journal of Central South University, 2018, 25(11): 2754–2765. DOI: https://doi.org/10.1007/s11771-018-3951-0.

    Article  Google Scholar 

  14. NAREI H, GHASEMPOUR R, NOOROLLAHI Y. The effect of employing nanofluid on reducing the bore length of a vertical ground-source heat pump [J]. Energy Convers Manag, 2016, 123: 581–591. DOI: https://doi.org/10.1016/j.enconman.2016.06.079.

    Article  Google Scholar 

  15. ARAMESH M, POURFAYAZ F, KASAEIAN A. Numerical investigation of the nanofluid effects on the heat extraction process of solar ponds in the transient step [J]. Sol Energy, 2017, 157: 869–879. DOI: https://doi.org/10.1016/j.solener.2017.09.011.

    Article  Google Scholar 

  16. PISE G A, SALVE S S, PISE A T, PISE A A. Investigation of solar heat pipe collector using nanofluid and surfactant [J]. Energy Procedia, 2016, 90: 481–491. DOI: https://doi.org/10.1016/j.egypro.2016.11.215.

    Article  Google Scholar 

  17. AKBARIANRAD N, MOHAMMADIAN F, ALHUYI NAZARI M, RAHBANI NOBAR B. Applications of nanotechnology in endodontic: A review [J]. Nanomedicine J, 2018, 5(3): 121–126. DOI: https://doi.org/10.22038/nmj.2018.005.0001.

    Google Scholar 

  18. MOHAMADIAN F, EFTEKHAR L, HAGHIGHI BARDINEH Y. Applying GMDH artificial neural network to predict dynamic viscosity of an antimicrobial nanofluid [J]. Mashhad Univ Med Sci, 2018, 5(4): 217–221. DOI: https://doi.org/10.22038/nmj.2018.05.00005.

    Google Scholar 

  19. ALRASHED A A, KARIMIPOUR A, BAGHERZADEH S A, SAFAEI M R, AFRAND M. Electro-and thermophysical properties of water-based nanofluids containing copper ferrite nanoparticles coated with silica: Experimental data, modeling through enhanced ANN and curve fitting [J]. Int J Heat Mass Transf, 2018, 127: 925–935. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.123.

    Article  Google Scholar 

  20. HAGHIGHI BARDINEH Y, MOHAMADIAN F, AHMADI M H, AKBARIANRAD N. Medical and dental applications of renewable energy systems [J]. Int J Low-Carbon Technol, 2018: 1–7. DOI: https://doi.org/10.1093/ijlct/cty040.

    Google Scholar 

  21. ARANI A A A, AKBARI O A, SAFAEI M R, MARZBAN A, ALRASHED A A A A, AHMADI G R, NGUYZN T K. Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink [J]. Int J Heat Mass Transf, 2017, 113: 780–795. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.089.

    Article  Google Scholar 

  22. MAHIAN O, KIANIFAR A, KALOGIROU S A, POP I, WONGWISES S. A review of the applications of nanofluids in solar energy [J]. Int J Heat Mass Transf, 2013, 57(2): 582–594. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037.

    Article  Google Scholar 

  23. MAHIAN O, KIANIFAR A, SAHIN A Z, WONGWISES S. Heat transfer, pressure drop, and entropy generation in a solar collector using SiO2/water nanofluids: Effects of nanoparticle size and pH [J]. J Heat Transfer, 2015, 137: 061011. DOI: https://doi.org/10.1115/1.4029870.

    Article  Google Scholar 

  24. TAWFIK M M. Experimental studies of nanofluid thermal conductivity enhancement and applications: A review [J]. Renew Sustain Energy Rev, 2017, 75: 1239–1253. DOI: https://doi.org/10.1016/j.rser.2016.11.111.

    Article  Google Scholar 

  25. PONMANI S, WILLIAM J K M, SAMUEL R, NAGARAJAN R, SANGWAI J S. Formation and characterization of thermal and electrical properties of CuO and ZnO nanofluids in xanthan gum [J]. Colloids Surfaces A: Physicochem Eng Asp, 2014, 443: 37–43. DOI: https://doi.org/10.1016/j.colsurfa.2013.10.048.

    Article  Google Scholar 

  26. CUI W, SHEN Z, YANG J, WU S. Molecular dynamics simulation on flow behaviors of nanofluids confined in nanochannel [J]. Case Stud Therm Eng, 2015, 5: 114–121. DOI: https://doi.org/10.1016/j.csite.2015.03.007.

    Article  Google Scholar 

  27. ALAWI O A, SIDIK N A C, XIAN H W, KEAN T H, KAZI S N. Thermal conductivity and viscosity models of metallic oxides nanofluids [J]. Int J Heat Mass Transf, 2018, 116: 1314–1325. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.133.

    Article  Google Scholar 

  28. HOSSEINI S M, SAFAEI M R, GOODARZI M, ALRASHED A A A A, NGUYEN T K. New temperature, interfacial shell dependent dimensionless model for thermal conductivity of nanofluids [J]. Int J Heat Mass Transf, 2017, 114: 207–210. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.061.

    Article  Google Scholar 

  29. YIAMSAWAS T, DALKILIC A S, MAHIAN O, WONGWISES S. Measurement and correlation of the viscosity of water-based Al2O3 and TiO2 nanofluids in high temperatures and comparisons with literature reports [J]. Journal of Dispersion Science and Technology, 2013, 34: 1697–1703. DOI: https://doi.org/10.1080/01932691.2013.764483.

    Article  Google Scholar 

  30. AHMADI M H, MIRLOHI A, NAZARI M A, GHASEMPOUR R. A review of thermal conductivity of various nanofluids [J]. J Mol Liq, 2018, 265: 181–188. DOI: https://doi.org/10.1016/j.molliq.2018.05.124.

    Article  Google Scholar 

  31. AHMADI M H, AHMADI M A, NAZARI M A, MAHIAN O, GHASEMPOUR R. A proposed model to predict thermal conductivity ratio of Al2O3/EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach [J]. J Therm Anal Calorim, 2018, 135: 271–281. DOI: https://doi.org/10.1007/s10973-018-7035-z.

    Article  Google Scholar 

  32. RASHIDI S, ESKANDARIAN M, MAHIAN O, PONCET S. Combination of nanofluid and inserts for heat transfer enhancement [J]. J Therm Anal Calorim, 2018, 135: 437–460. DOI: https://doi.org/10.1007/s10973-018-7070-9.

    Article  Google Scholar 

  33. RASHIDI S, MAHIAN O, LANGURI E M. Applications of nano fluids in condensing and evaporating systems [J]. J Therm Anal Calorim, 2017, 131: 2027–2039. DOI: https://doi.org/10.1007/s10973-017-6773-7.

    Article  Google Scholar 

  34. MAHIAN O, LOLSL L, AMANI M. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory [J]. Phys Rep, 2018, 700: 1–48. DOI: https://doi.org/10.1016/j.physrep.2018.11.004.

    MathSciNet  Google Scholar 

  35. MAHIAN O, LOLSL L, AMANI M. Recent advances in modeling and simulation of nanofluid flows—Part II: Applications [J]. Phys Rep, 2018, 791: 1–59. DOI: https://doi.org/10.1016/j.physrep.2018.11.003.

    Article  MathSciNet  Google Scholar 

  36. ALIZADEH H, GHASEMPOUR R, SHAFII M B, AHMADI M H, YAN W M, NAZARI M A. Numerical simulation of PV cooling by using single turn pulsating heat pipe [J]. Int J Heat Mass Transf, 2018, 127: 203–208. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.108.

    Article  Google Scholar 

  37. NAZARI M A, GHASEMPOUR R, SHAFII M B, AHMADI M H. Experimental investigation of triton X-100 solution on pulsating heat pipe thermal performance [J]. J Thermophys Heat Transf, 2018, 32: 806–812: 1–7. DOI: https://doi.org/10.2514/1.T5295.

    Article  Google Scholar 

  38. ASME. Heat pipe technology history [EB/OL]. [2019-02-05] https://doi.org/www.amsenergy.com/heat-pipe-technology-history/.

  39. FAEGH M, SHAFII M B. Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes [J]. Desalination, 2017, 409: 128–135. DOI: https://doi.org/10.1016/j.desal.2017.01.023.

    Article  Google Scholar 

  40. QU J, WU H, WANG Q. Experimental investigation of silicon-based micro-pulsating heat pipe for cooling electronics [J]. Nanoscale Microscale Thermophys Eng, 2012, 16(1): 37–49. DOI: https://doi.org/10.1080/15567265.2011.645999.

    Article  Google Scholar 

  41. ARAB M, SOLTANIEH M, SHAFII M B. Experimental investigation of extra-long pulsating heat pipe application in solar water heaters [J]. Exp Therm Fluid Sci, 2012, 42: 6–15. DOI: https://doi.org/10.1016/j.expthermflusci.2012.03.006.

    Article  Google Scholar 

  42. SHIRZADI N, ROSHANDEL R, SHAFII M B. Integration of miniature heat pipes into a proton exchange membrane fuel cell for cooling applications [J]. Heat Transf Eng, 2017, 38(18): 1595–1605. DOI: https://doi.org/10.1080/01457632.2016.1262722.

    Article  Google Scholar 

  43. JAHANGIRI MAMOURI S, GHOLAMI DERAMI H, GHIASI M, SHAFII M B, SHIEE Z. Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still [J]. Energy, 2014, 75: 501–507. DOI: https://doi.org/10.1016/j.energy.2014.08.005.

    Article  Google Scholar 

  44. JAFARI MOSLEH H, JAHANGIRI MAMOURI S, SHAFII M B, HAKIM SIMA A. A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector [J]. Energy Convers Manag, 2015, 99: 141–150. DOI: https://doi.org/10.1016/j.enconman.2015.04.028.

    Article  Google Scholar 

  45. MOHAMMADI M, MOHAMMADI M, GHAHREMANI A R, SHAFII M B, MOHAMMADI N. Experimental investigation of thermal resistance of a ferrofluidic closed-loop pulsating heat pipe [J]. Heat Transf Eng, 2014, 35(1): 25–33. DOI: https://doi.org/10.1080/01457632.2013.810086.

    Article  Google Scholar 

  46. TASLIMIFAR M, MOHAMMADI M, AFSHIN H, SAIDI M H, SHAFII M B. Overall thermal performance of ferrofluidic open loop pulsating heat pipes: An experimental approach [J]. Int J Therm Sci, 2013, 65: 234–241. DOI: https://doi.org/10.1016/j.ijthermalsci.2012.10.016.

    Article  Google Scholar 

  47. FAGHRI A. Heat pipe science and technology [M]. Taylor & Francis, 1995.

    Google Scholar 

  48. POPLASKI L M, BENN S P, FAGHRI A. Thermal performance of heat pipes using nanofluids [J]. Int J Heat Mass Transf, 2017, 107(7, 8): 358–371. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.111.

    Article  Google Scholar 

  49. WUSIMAN K E B J, CHUNG H S, NINE M J, HANDRY A, EOM Y S, KIM J H, JEONG H M. Heat transfer characteristics of nanofluid through circular tube [J]. Journal of Central South University, 2013, 20(1): 142–148. DOI: https://doi.org/10.1007/s11771-013-1469-z.

    Article  Google Scholar 

  50. TANG Y, CHEN Q, HUAN GUAN W, TAO LI Z, HAI YU B, YUAN W. Thermal analysis of an LED module with a novelly assembled heat pipe heat sink [J]. Journal of Central South University, 2017, 24(4): 921–928. DOI: https://doi.org/10.1007/s11771-017-3494-9.

    Article  Google Scholar 

  51. MA H, LIANG S. Heat transport capability in pulsating heat pipes [C]// 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2002. DOI: https://doi.org/10.2514/6.2002-2765.

    Book  Google Scholar 

  52. NIKOLAYEV V S. Effect of tube heat conduction on the single branch pulsating heat pipe start-up [J]. Int J Heat Mass Transf, 2016, 95: 477–487. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.016.

    Article  Google Scholar 

  53. ALAGAPPAN N, KARUNAKARAN N. Thermal characteristics of a circular finned thermosyphon using different working fluids [J]. Appl Mech Mater, 2014, 575: 322–328. DOI: https://doi.org/10.13140/RG.2.1.2780.5609.

    Article  Google Scholar 

  54. YANG X F, LIU Z H. Flow boiling heat transfer in the evaporator of a loop thermosyphon operating with CuO based aqueous nanofluid [J]. Int J Heat Mass Transf, 2012, 55(25, 26): 7375–7384. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.026.

    Article  Google Scholar 

  55. KHALILI M, SHAFII M B. Experimental and numerical investigation of the thermal performance of a novel sintered-wick heat pipe [J]. Appl Therm Eng, 2016, 94: 59–75. DOI: https://doi.org/10.1016/j.applthermaleng.2015.10.120.

    Article  Google Scholar 

  56. ABOUTALEBI M, NIKRAVAN MOGHADDAM A M, MOHAMMADI N, SHAFII M B. Experimental investigation on performance of a rotating closed loop pulsating heat pipe [J]. Int Commun Heat Mass Transf, 2013, 45: 137–145. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2013.04.008.

    Article  Google Scholar 

  57. KHALILI M, SHAFII M B. Investigaing thermal performance of a partly sintered-wick heat pipe filled with different working fluids [J]. Sci Iran, 2016, 23(6): 2616–2625. DOI: https://doi.org/10.24200/sci.2016.3971.

    Google Scholar 

  58. REAY D, KEW P. Heat pipes: Theory, design and applications [M]. Elsevier, 2013.

    Google Scholar 

  59. SEDIGHI E, AMARLOO A, SHAFII B. Numerical and experimental investigation of flat-plate pulsating heat pipes with extra branches in the evaporator section [J]. Int J Heat Mass Transf, 2018, 126: 431–441. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.047.

    Article  Google Scholar 

  60. SEDIGHI E, AMARLOO A, SHAFII M B. Experimental investigation of the thermal characteristics of single-turn pulsating heat pipes with an extra branch [J]. Int J Therm Sci, 2018, 134: 258–268. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.08.024.

    Article  Google Scholar 

  61. YANG K S, CHENG Y C, JENG M S, CHIEN K H, SHYU J C. An experimental investigation of micro pulsating heat pipes [J]. Micromachines, 2014, 5(2): 385–395. DOI: https://doi.org/10.1109/NEMS.2013.6559862.

    Article  Google Scholar 

  62. SHAFII M B, ARABNEJAD S, SABOOHI Y, JAMSHIDI H. Experimental investigation of pulsating heat pipes and a proposed correlation [J]. Heat Transf Eng, 2010, 31(10): 854–861. DOI: https://doi.org/10.1080/01457630903547636.

    Article  Google Scholar 

  63. WU Q, XU R, ZHANG H, LI Y. Heat transfer of closed flat-plat loop pulsating heat pipe in start-up stage [C]// ICMREE2011-Proc. 2011 Int Conf Mater Renew Energy Environ. 2011, 1: 864–868. DOI: https://doi.org/10.1109/ICMREE.2011.5930941.

    Google Scholar 

  64. HAN X, WANG X, ZHENG H, XU X, CHEN G. Review of the development of pulsating heat pipe for heat dissipation [J]. Renew Sustain Energy Rev, 2016, 59: 692–709.

    Article  Google Scholar 

  65. GOSHAYESHI H R, GOODARZI M, SAFAEI M R, DAHARI M. Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field [J]. Exp Therm Fluid Sci, 2016, 74: 265–270. DOI: https://doi.org/10.1016/j.expthermflusci.2016.01.003.

    Article  Google Scholar 

  66. NAZARI M A, AHMADI M H, GHASEMPOUR R. A review on pulsating heat pipes: From solar to cryogenic applications [J]. Applied Energy, 2018, 222: 475–484. DOI: https://doi.org/10.1016/j.apenergy.2018.04.020.

    Article  Google Scholar 

  67. ALHUYI NAZARI M, AHMADI M H, GHASEMPOUR R, SHAFII M B. How to improve the thermal performance of pulsating heat pipes: A review on working fluid [J]. Renew Sustain Energy Rev, 2018, 91: 630–638. DOI: https://doi.org/10.1016/j.rser.2018.04.042.

    Article  Google Scholar 

  68. SARAFRAZ M M, HORMOZI F, PEYGHAMBARZADEH S M. Thermal performance and efficiency of a thermosyphon heat pipe working with a biologically ecofriendly nanofluid [J]. Int Commun Heat Mass Transf, 2014, 57: 297–303. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2014.08.020.

    Article  Google Scholar 

  69. TECCHIO C, OLIVEIRA J L G, PAIVA K V, MANTELLI M B H, GANDOLFI R, RIBEIRO L G S. Thermal performance of thermosyphons in series connected by thermal plugs [J]. Exp Therm Fluid Sci, 2017, 88: 409–422. DOI: https://doi.org/10.1016/j.expthermflusci.2017.06.021.

    Article  Google Scholar 

  70. LV F Y, ZHANG P, OREJON D, ASKOUNIS A, SHEN B. Heat transfer performance of a lubricant-infused thermosyphon at various filling ratios [J]. Int J Heat Mass Transf, 2017, 115: 725–736. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.062.

    Article  Google Scholar 

  71. GEDIK E. Experimental investigation of the thermal performance of a two-phase closed thermosyphon at different operating conditions [J]. Energy Build, 2016, 127: 1096–1107. DOI: https://doi.org/10.1016/j.enbuild.2016.06.066.

    Article  Google Scholar 

  72. RAMEZANIZADEH M, ALHUYI NAZARI M, AHMADI M H, AÇIKKALP E. Application of nanofluids in thermosyphons: A review [J]. J Mol Liq, 2018, 272: 395–402. DOI: https://doi.org/10.1016/j.molliq.2018.09.101.

    Article  Google Scholar 

  73. RAMEZANIZADEH M, ALHUYI NAZARI M, AHMADI M H, CHAU K. Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger [J]. Eng Appl Comput Fluid Mech, 2019, 13(1): 40–47. DOI: https://doi.org/10.1080/19942060.2018.1518272.

    Google Scholar 

  74. SURESHKUMAR R, MOHIDEEN S T, NETHAJI N. Heat transfer characteristics of nanofluids in heat pipes: A review [J]. Renew Sustain Energy Rev, 2013, 20: 397–410. DOI: https://doi.org/10.1016/j.rser.2012.11.044.

    Article  Google Scholar 

  75. SCHREIBER M, WITS W W, TE RIELE G J. Numerical and experimental investigation of a counter-current two-phase thermosyphon with cascading pools [J]. Appl Therm Eng, 2016, 99: 133–146. DOI: https://doi.org/10.1016/j.applthermaleng.2015.12.095.

    Article  Google Scholar 

  76. DAIMARU T, YOSHIDA S, NAGAI H. Study on thermal cycle in oscillating heat pipes by numerical analysis [J]. Appl Therm Eng, 2017, 113: 1219–1227. DOI: https://doi.org/10.1016/j.applthermaleng.2016.11.114.

    Article  Google Scholar 

  77. SHEWALE S P, SAHU S K, CHOUGULE S S, PISE A T. A review of heat pipe with nanofluid for electronic cooling [C]// Int Conf Adv Eng Technol. 2014, ICAET. DOI: https://doi.org/10.1109/ICAET.2014.7105296.

    Book  Google Scholar 

  78. LATAOUI Z, JEMNI A. Experimental investigation of a stainless steel two-phase closed thermosyphon [J]. Appl Therm Eng, 2017, 121: 721–727. DOI: https://doi.org/10.1016/j.applthermaleng.2017.04.135.

    Article  Google Scholar 

  79. ARABNEJAD S, RASOULIAN R, SHAFII M B, SABOOHI Y. Numerical investigation of the performance of a U-shaped pulsating heat pipe [J]. Heat Transf Eng, 2010, 31(14): 1155–1164. DOI: https://doi.org/10.1080/01457631003689278.

    Article  Google Scholar 

  80. EBRAHIMI M, SHAFII M B, BIJARCHI M A. Experimental investigation of the thermal management of flat-plate closed-loop pulsating heat pipes with interconnecting channels [J]. Appl Therm Eng, 2015, 90: 838–847. DOI: https://doi.org/10.1016/j.applthermaleng.2015.07.040.

    Article  Google Scholar 

  81. SHAFII M B, FAGHRI A, ZHANG Y. Analysis of heat transfer in unlooped and looped pulsating heat pipes [J]. Int J Numer Methods Heat Fluid Flow, 2002, 12(5): 585–609. DOI: https://doi.org/10.1108/09615530210434304.

    Article  MATH  Google Scholar 

  82. HOLLEY B, FAGHRI A. Analysis of pulsating heat pipe with capillary wick and varying channel diameter [J]. Int J Heat Mass Transf, 2005, 48(13): 2635–2651. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.013.

    Article  MATH  Google Scholar 

  83. XU D, LI L, LIU H. Experimental investigation on the thermal performance of helium based cryogenic pulsating heat pipe [J]. Exp Therm Fluid Sci, 2016, 70: 61–68. DOI: https://doi.org/10.1016/j.expthermflusci.2015.08.024.

    Article  Google Scholar 

  84. JIAO A J, MA H B, CRITSER J K. Experimental investigation of cryogenic oscillating heat pipes [J]. Int J Heat Mass Transf, 2009, 52(15, 16): 3504–3509. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.013.

    Article  Google Scholar 

  85. LIU Y, GUO K. A novel cryogenic power cycle for LNG cold energy recovery [J]. Energy, 2011, 36(5): 2828–2833. DOI: https://doi.org/10.1016/j.energy.2011.02.024.

    Article  Google Scholar 

  86. CAO Y, FAGHRI A. Closed-form analytical solutions of high-temperature heat pipe startup and frozen startup limitation [J]. J Heat Transfer, 1992, 114(4): 1028. DOI: https://doi.org/10.1115/1.2911873.

    Article  Google Scholar 

  87. AHMADI M H, NAZARI M A, GHASEMPOUR R, MADAH H, SHAFII M B, AHMADI M A. Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods [J]. Colloids Surfaces A: Physicochem Eng Asp, 2018, 541: 154–164. DOI: https://doi.org/10.1016/j.colsurfa.2018.01.030.

    Article  Google Scholar 

  88. MAJID S, MOHAMMAD J. Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow [J]. Journal of Central South University, 2017, 24(8): 1850–1865. DOI: https://doi.org/10.1007/s11771-017-3593-7.

    Article  Google Scholar 

  89. MAHMUDUL HAQUE A K M, KWON S, KIM J. An experimental study on thermal characteristics of nanofluid with graphene and multi-wall carbon nanotubes [J]. Journal of Central South University, 2015, 22(8): 3202–3210. DOI: https://doi.org/10.1007/s11771-015-2857-3.

    Article  Google Scholar 

  90. AZARI A. Thermal conductivity modeling of water containing metal oxide nanoparticles [J]. Journal of Central South University, 2015, 22(3): 1141–1145. DOI: https://doi.org/10.1007/s11771-015-2626-3.

    Article  MathSciNet  Google Scholar 

  91. CHOI S U S, ZHANG Z G, YU W, LOCKWOOD F E, GRULKE E. Anomalous thermal conductivity enhancement in nanotube suspension [J]. Appl Phys Lett, 2001, 79: 2252–2254. DOI: https://doi.org/10.1063/1.1408272.

    Article  Google Scholar 

  92. JIANG W, DING G, PENG H, GAO Y, WANG K. Experimental and model research on nanorefrigerant thermal conductivity [J]. HVAC&R Res, 2009, 15(3): 651–669. DOI: https://doi.org/10.1080/10789669.2009.10390855.

    Article  Google Scholar 

  93. PRYAZHNIKOV M I, MINAKOV A V, RUDYAK V Y, GUZEI D V. Thermal conductivity measurements of nanofluids [J]. Int J Heat Mass Transf, 2017, 104: 1275–1282. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.080.

    Article  Google Scholar 

  94. HONG T K, YANG H S, CHOI C J. Study of the enhanced thermal conductivity of Fe nanofluids [J]. J Appl Phys, 2005, 97(6): 064311. DOI: https://doi.org/10.1063/1.1861145.

    Article  Google Scholar 

  95. ZHU D, LI X, WANG N, WANG X, GAO J, LI H. Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids [J]. Curr Appl Phys, 2009, 9(1): 131–139. DOI: https://doi.org/10.1016/j.cap.2007.12.008.

    Article  Google Scholar 

  96. ALAWI O A, SIDIK N A C, MOHAMMED H A, SYAHRULLAIL S. Fluid flow and heat transfer characteristics of nanofluids in heat pipes: A review [J]. Int Commun Heat Mass Transf, 2014, 56: 50–62. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2014.04.014.

    Article  Google Scholar 

  97. GUPTA N K, TIWARI A K, GHOSH S K. Heat transfer mechanisms in heat pipes using nanofluids—A review [J]. Exp Therm Fluid Sci, 2018, 90: 84–100. DOI: https://doi.org/10.1016/j.expthermflusci.2017.08.013.

    Article  Google Scholar 

  98. POPLASKI L M, BENN S P, FAGHRI A. Thermal performance of heat pipes using nanofluids [J]. Int J Heat Mass Transf, 2017, 107: 358–371. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.111.

    Article  Google Scholar 

  99. GHANBARPOUR M, KHODABANDEH R. Entropy generation analysis of cylindrical heat pipe using nanofluid [J]. Thermochim Acta, 2015, 610: 37–46. DOI: https://doi.org/10.1016/j.tca.2015.04.028.

    Article  Google Scholar 

  100. GUNNASEGARAN P, ABDULLAH M Z, SHUAIB N H. Influence of nanofluid on heat transfer in a loop heat pipe [J]. Int Commun Heat Mass Transf, 2013, 47: 82–91. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2013.07.003.

    Article  Google Scholar 

  101. MASHAEI P R, SHAHRYARI M, FAZELI H, HOSSEINALIPOUR S M. Numerical simulation of nanofluid application in a horizontal mesh heat pipe with multiple heat sources: A smart fluid for high efficiency thermal system [J]. Appl Therm Eng, 2016, 100: 1016–1030. DOI: https://doi.org/10.1016/j.applthermaleng.2016.02.111.

    Article  Google Scholar 

  102. NAPHON P, ASSADAMONGKOL P, BORIRAK T. Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency [J]. Int Commun Heat Mass Transf, 2008, 35(10): 1316–1319. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2008.07.010.

    Article  Google Scholar 

  103. CHEN Y J, WANG P Y, LIU Z H, LI Y Y. Heat transfer characteristics of a new type of copper wire-bonded flat heat pipe using nanofluids [J]. Int J Heat Mass Transf, 2013, 67: 548–559. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.060.

    Article  Google Scholar 

  104. KANG S W, WEI W C, TSAI S H, HUANG C C. Experimental investigation of nanofluids on sintered heat pipe thermal performance [J]. Appl Therm Eng, 2009, 29(5, 6): 973–979. DOI: https://doi.org/10.1016/j.applthermaleng.2008.05.010.

    Article  Google Scholar 

  105. KAVUSI H, TOGHRAIE D. A comprehensive study of the performance of a heat pipe by using of various nanofluids [J]. Adv Powder Technol, 2017, 28(11): 3074–3084. DOI: https://doi.org/10.1016/j.apt.2017.09.022.

    Article  Google Scholar 

  106. VIJAYAKUMAR M, NAVANEETHAKRISHNAN P, KUMARESAN G. Thermal characteristics studies on sintered wick heat pipe using CuO and Al2O3 nanofluids [J]. Exp Therm Fluid Sci, 2016, 79: 25–35. DOI: https://doi.org/10.1016/j.expthermflusci.2016.06.021.

    Article  Google Scholar 

  107. WAN Z, DENG J, LI B, XU Y, WANG X, TANG Y. Thermal performance of a miniature loop heat pipe using water–copper nanofluid [J]. Appl Therm Eng, 2015, 78: 712–719. DOI: https://doi.org/10.1016/j.applthermaleng.2014.11.010.

    Article  Google Scholar 

  108. GUNNASEGARAN P, ABDULLAH M Z, YUSOFF M Z, KANNA R. Heat transfer in a loop heat pipe using diamond-H2O nanofluid [J]. Heat Transf Eng, 2017, 39: 117–131: 1–15. DOI: https://doi.org/10.1080/01457632.2017.1363616.

    Google Scholar 

  109. GHANBARPOUR M, NIKKAM N, KHODABANDEH R, TOPRAK M S. Improvement of heat transfer characteristics of cylindrical heat pipe by using SiC nanofluids [J]. Appl Therm Eng, 2015, 90: 127–135. DOI: https://doi.org/10.1016/j.applthermaleng.2015.07.004

    Article  Google Scholar 

  110. SENTHIL R, RATCHAGARAJA D, SILAMBARASAN R, MANIKANDAN R. Contemplation of thermal characteristics by filling ratio of Al2O3 nanofluid in wire mesh heat pipe [J]. Alexandria Eng J, 2016, 55(2): 1063–1068. DOI: https://doi.org/10.1016/j.aej.2016.03.011.

    Article  Google Scholar 

  111. ALY W I A, ELBALSHOUNY M A, ABD EL- HAMEED H M, FATOUH M. Thermal performance evaluation of a helically-micro-grooved heat pipe working with water and aqueous Al2O3 nanofluid at different inclination angle and filling ratio [J]. Appl Therm Eng, 2017, 110: 1294–1304. DOI: https://doi.org/10.1016/j.applthermaleng.2016.08.130.

    Article  Google Scholar 

  112. MOUSA M G. Effect of nanofluid concentration on the performance of circular heat pipe [J]. Ain Shams Eng J, 2011, 2(1): 63–69. DOI: https://doi.org/10.1016/j.asej.2011.03.003.

    Article  Google Scholar 

  113. GHANBARPOUR M, NIKKAM N, KHODABANDEH R, TOPRAK M S, MUHAMMED M. Thermal performance of screen mesh heat pipe with Al2O3 nanofluid [J]. Exp Therm Fluid Sci, 2015, 66: 213–220. DOI: https://doi.org/10.1016/j.expthermflusci.2015.03.024.

    Article  Google Scholar 

  114. HUNG Y H, TENG T P, LIN B G. Evaluation of the thermal performance of a heat pipe using alumina nanofluids [J]. Exp Therm Fluid Sci, 2013, 44: 504–511. DOI: https://doi.org/10.1016/j.expthermflusci.2012.08.012.

    Article  Google Scholar 

  115. TENG T P, HSU H G, MO H E, CHEN C C. Thermal efficiency of heat pipe with alumina nanofluid [J]. J Alloys Compd, 2010, 504: S380–S384. DOI: https://doi.org/10.1016/j.jallcom.2010.02.046.

    Article  Google Scholar 

  116. PANDIARAJ P, GNANAVELBABU A, SARAVANAN P. Experimental and statistical analysis of MgO nanofluids for thermal enhancement in a novel flat plate heat pipes [J]. Int J Nanosci, 2018, 17(1, 2): 1760018. DOI: https://doi.org/10.1142/S0219581X17600183.

    Article  Google Scholar 

  117. MASHAEI P R, SHAHRYARI M. Effect of nanofluid on thermal performance of heat pipe with two evaporators; application to satellite equipment cooling [J]. Acta Astronaut, 2015, 111: 345–355. DOI: https://doi.org/10.1016/j.actaastro.2015.02.003.

    Article  Google Scholar 

  118. MOHANRAJ C, DINESHKUMAR R, MURUGAN G. Experimental studies on effect of heat transfer with CuO-H2O nanofluid on flat plate heat pipe [J]. Mater Today Proc, 2017, 4(2): 3852–3860. DOI: https://doi.org/10.1016/j.matpr.2017.02.283.

    Article  Google Scholar 

  119. VENKATACHALAPATHY S, KUMARESAN G, SURESH S. Performance analysis of cylindrical heat pipe using nanofluids–An experimental study [J]. Int J Multiph Flow, 2015, 72: 188–197. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.006.

    Article  Google Scholar 

  120. WANG G S, SONG B, LIU Z H. Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids [J]. Exp Therm Fluid Sci, 2010, 34(8): 1415–1421. DOI: https://doi.org/10.1016/j.expthermflusci.2010.07.004.

    Article  Google Scholar 

  121. HAJIAN R, LAYEGHI M, ABBASPOUR SANI K. Experimental study of nanofluid effects on the thermal performance with response time of heat pipe [J]. Energy Convers Manag, 2012, 56: 63–68. DOI: https://doi.org/10.1016/j.enconman.2011.11.010.

    Article  Google Scholar 

  122. GHANBARPOUR M, NIKKAM N, KHODABANDEH R, TOPRAK M S. Thermal performance of inclined screen mesh heat pipes using silver nanofluids [J]. Int Commun Heat Mass Transf, 2015, 67: 14–20. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2015.06.009.

    Article  Google Scholar 

  123. SALEH R, PUTRA N, PRAKOSO S P, SEPTIADI W N. Experimental investigation of thermal conductivity and heat pipe thermal performance of ZnO nanofluids [J]. Int J Therm Sci, 2013, 63: 125–132. DOI: https://doi.org/10.1016/j.ijthermalsci.2012.07.011.

    Article  Google Scholar 

  124. ARYA A, SARAFRAZ M M, SHAHMIRI S, MADANI S A H, NIKKHAH V, NAKHJAVANI S M. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater [J]. Heat Mass Transf, 2017, 54: 985–997. DOI: https://doi.org/10.1007/s00231-017-2201-6.

    Article  Google Scholar 

  125. SADEGHINEZHAD E, AZIZIAN R, AKHIANI A R, TAHAN LATIBARI S, MEHRALI M. Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe [J]. Energy Convers Manag, 2016, 118: 459–473. DOI: https://doi.org/10.1016/j.enconman.2016.04.028.

    Article  Google Scholar 

  126. THARAYIL T, ASIRVATHAM L G, DAU M J, WONGWISES S. Entropy generation analysis of a miniature loop heat pipe with graphene–water nanofluid: Thermodynamics model and experimental study [J]. Int J Heat Mass Transf, 2017, 106: 407–421. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.035.

    Article  Google Scholar 

  127. THARAYIL T, ASIRVATHAM L G, RAVINDRAN V, WONGWISES S. Thermal performance of miniature loop heat pipe with graphene–water nanofluid [J]. Int J Heat Mass Transf, 2016, 93: 957–968. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.011

    Article  Google Scholar 

  128. PARK S S, KIM N J. A study on the characteristics of carbon nanofluid for heat transfer enhancement of heat pipe [J]. Renew Energy, 2014, 65: 123–129. DOI: https://doi.org/10.1016/j.renene.2013.07.040.

    Article  Google Scholar 

  129. SADEGHINEZHAD E, MEHRALI M, ROSEN M A. Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance [J]. Appl Therm Eng, 2016, 100: 775–787. DOI: https://doi.org/10.1016/j.applthermaleng.2016.02.071.

    Article  Google Scholar 

  130. KIM H J, LEE S H, BIN KIM S, JANG S P. The effect of nanoparticle shape on the thermal resistance of a flat-plate heat pipe using acetone-based Al2O3 nanofluids [J]. Int J Heat Mass Transf, 2016, 92: 572–577. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.013.

    Article  Google Scholar 

  131. TSAI C Y, CHIEN H T, DING P P, CHAN B, LUH T Y, CHEN P H. Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance [J]. Mater Lett, 2004, 58(9): 1461–1465. DOI: https://doi.org/10.1016/j.matlet.2003.10.009.

    Article  Google Scholar 

  132. BRAHIM T, JEMNI A. Numerical case study of packed sphere wicked heat pipe using Al2O3 and CuO based water nanofluid [J]. Case Stud Therm Eng, 2016, 8: 311–321. DOI: https://doi.org/10.1016/j.csite.2016.09.002.

    Article  Google Scholar 

  133. KUMARESAN G, VENKATACHALAPATHY S, ASIRVATHAM L G. Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids [J]. Int J Heat Mass Transf, 2014, 72: 507–516. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.029.

    Article  Google Scholar 

  134. VIJAYAKUMAR M, NAVANEETHAKRISHNAN P, KUMARESAN G, KAMATCHI R. A study on heat transfer characteristics of inclined copper sintered wick heat pipe using surfactant free CuO and Al2O3 nanofluids [J]. J Taiwan Inst Chem Eng, 2017, 81: 190–198. DOI: https://doi.org/10.1016/j.jtice.2017.10.032.

    Article  Google Scholar 

  135. HASSAN M I, ALZAROONI I A, SHATILLA Y. The effect of water-based nanofluid incorporating Al2O3 nanoparticles on heat pipe performance [J]. Energy Procedia, 2015, 75: 3201–3206. DOI: https://doi.org/10.1016/j.egypro.2015.07.674.

    Article  Google Scholar 

  136. WANG W, DUAN G, LI J, ZHAO W, LI C, LIU Z. The preparation and thermal performance research of spherical Ag-H2O nanofluids & applied in heat pipe [J]. Appl Therm Eng, 2017, 116: 811–822. DOI: https://doi.org/10.1016/j.applthermaleng.2017.02.018.

    Article  Google Scholar 

  137. KIM K M, BANG I C. Effects of graphene oxide nanofluids on heat pipe performance and capillary limits [J]. Int J Therm Sci, 2016, 100: 346–356. DOI: https://doi.org/10.1016/j.ijthermalsci.2015.10.015.

    Article  Google Scholar 

  138. KESHAVARZ MORAVEJI M, RAZVARZ S. Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance [J]. Int Commun Heat Mass Transf, 2012, 39(9) 1444–1448. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2012.07.024.

    Article  Google Scholar 

  139. GOSHAYESHI H R, SAFAEI M R, GOODARZI M, DAHARI M. Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe [J]. Powder Technol, 2016, 301: 1218–1226. DOI: https://doi.org/10.1016/j.powtec.2016.08.007.

    Article  Google Scholar 

  140. BECK M P, YUAN Y, WARRIER P, TEJA A S. The effect of particle size on the thermal conductivity of alumina nanofluids [J]. J Nanoparticle Res, 2009, 11(5): 1129–1136. DOI: https://doi.org/10.1007/s11051-008-9500-2.

    Article  Google Scholar 

  141. HASSAN H, HARMAND S. Study of the parameters and characteristics of flat heat pipe with nanofluids subjected to periodic heat load on its performance [J]. Int J Therm Sci, 2015, 97: 126–142. DOI: https://doi.org/10.1016/j.ijthermalsci.2015.06.009.

    Article  Google Scholar 

  142. MONIRIMANESH N, NOWEE S M, KHAYYAMI S, ABRISHAMCHI I. Performance enhancement of an experimental air conditioning system by using TiO2/ methanol nanofluid in heat pipe heat exchangers [J]. Heat Mass Transf, 2016, 52(5): 1025–1035. DOI: https://doi.org/10.1007/s00231-015-1615-2.

    Article  Google Scholar 

  143. NEGM M N A, ABDEL- REHIM A A, ATTIA A A A. Investigating the effect of Al2O3/water nanofluid on the efficiency of a thermosyphon flat-plate solar collector [M]// Volume 8: Heat Transfer and Thermal Engineering. 2016: V008T10A097. DOI: https://doi.org/10.1115/IMECE2016-66039.

    Book  Google Scholar 

  144. BUSCHMANN M H. Nanofluids in thermosyphons and heat pipes: Overview of recent experiments and modelling approaches [J]. Int J Therm Sci, 2013, 72: 1–17. DOI: https://doi.org/10.1016/j.ijthermalsci.2013.04.024.

    Article  Google Scholar 

  145. ALAGAPPAN N, KARUNAKARAN N. Performance investigation of 405 stainless steel thermosyphon using cerium (IV) oxide nano fluid [J]. International Journal of Engineering, 2017, 30(4) 575–581. DOI: https://doi.org/www.civilica.com/Paper-JR_IJE-JR_IJE-30-5_004=Performance-Investigation-of-405-Stainless-Steel-Thermosyphon-using-Cerium-IV-Oxide-Nano-Fluid.html.

    Google Scholar 

  146. PARAMATTHANUWAT T, BOOTHAISONG S, RITTIDECH S, BOODDACHAN K. Heat transfer characteristics of a two-phase closed thermosyphon using de ionized water mixed with silver nano [J]. Heat Mass Transf, 2010, 46(3): 281–285. DOI: https://doi.org/10.1007/s00231-009-0565-y.

    Article  Google Scholar 

  147. SARAFRAZ M M, HORMOZI F, PEYGHAMBARZADEH S M. Role of nanofluid fouling on thermal performance of a thermosyphon: Are nanofluids reliable working fluid? [J]. Appl Therm Eng, 2015, 82: 212–224. DOI: https://doi.org/10.1016/j.applthermaleng.2015.02.070.

    Article  Google Scholar 

  148. HUMINIC G, HUMINIC A. Heat transfer characteristics of a two-phase closed thermosyphons using nanofluids [J]. Exp Therm Fluid Sci, 2011, 35(3): 550–557. DOI: https://doi.org/10.1016/j.expthermflusci.2010.12.009.

    Article  MATH  Google Scholar 

  149. HUMINIC G, HUMINIC A. Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids [J]. Energy Convers Manag, 2013, 76: 393–399. DOI: https://doi.org/10.1016/j.enconman.2013.07.026.

    Article  MATH  Google Scholar 

  150. ABDOLLAHI A, KARIMI DARVANJOOGHI M H, KARIMIPOUR A, SAFAEI M R. Experimental study to obtain the viscosity of CuO-loaded nanofluid: Effects of nanoparticles’ mass fraction, temperature and basefluid’s types to develop a correlation [J]. Meccanica, 2018, 53(15): 3739–3757. DOI: https://doi.org/10.1007/s11012-018-0916-1.

    Article  Google Scholar 

  151. KISEEV V, AMINEV D, SAZHI O. Two-phase nanofluid-based thermal management systems for LED cooling [J]. IOP Conf Ser Mater Sci Eng, 2017, 192(1): 012020. DOI: https://doi.org/10.1088/1757-899X/192/1/012020.

    Article  Google Scholar 

  152. BUSCHMANN M H, FRANZKE U. Improvement of thermosyphon performance by employing nanofluid [J]. Int J Refrig, 2014, 40: 416–428. DOI: https://doi.org/10.1016/j.ijrefrig.2013.11.022.

    Article  Google Scholar 

  153. GRAB T, GROSS U, FRANZKE U, BUSCHMANN M H. Operation performance of thermosyphons employing titania and gold nanofluids [J]. Int J Therm Sci, 2014, 86: 352–364. DOI: https://doi.org/10.1016/j.ijthermalsci.2014.06.019.

    Article  Google Scholar 

  154. HERIS S Z, MOHAMMADPUR F, SHAKOURI A. Effect of electric field on thermal performance of thermosyphon heat pipes using nanofluids [J]. Mater Res Bull, 2014, 53: 21–27. DOI: https://doi.org/10.1016/j.materresbull.2014.01.030.

    Article  Google Scholar 

  155. KAMYAR A, ONG K S, SAIDUR R. Effects of nanofluids on heat transfer characteristics of a two-phase closed thermosyphon [J]. Int J Heat Mass Transf, 2013, 65: 610–618. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.046.

    Article  Google Scholar 

  156. HOSEINZADEH S, SAHEBI S A R, GHASEMIASL R, MAJIDIAN A R. Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water) [J]. Eur Phys J Plus, 2017, 132(5): 197. DOI: https://doi.org/10.1140/epjp/i2017-11455-3.

    Article  Google Scholar 

  157. SÖZEN A, MENLIK T, GÜRÜM, IRMAK A F, KILIÇ F, AKTAŞ M. Utilization of fly ash nanofluids in two-phase closed thermosyphon for enhancing heat transfer [J]. Exp Heat Transf, 2016, 29(3): 337–354. DOI: https://doi.org/10.1080/08916152.2014.976724.

    Article  Google Scholar 

  158. HERIS S Z, MOHAMMADPUR F, MAHIAN O, SAHIN A Z. Experimental study of two phase closed thermosyphon using Cuo/water nanofluid in the presence of electric field [J]. Exp Heat Transf, 2015, 28(4): 328–343. DOI: https://doi.org/10.1080/08916152.2014.883448.

    Article  Google Scholar 

  159. SALEHI H, ZEINALI HERIS S, SHARIFI F, RAZBANI M A. Effects of a nanofluid and magnetic field on the thermal efficiency of a two-phase closed thermosyphon [J]. Heat Transf Res, 2013, 42(7): 630–650. DOI: https://doi.org/10.1002/htj.21043.

    Article  Google Scholar 

  160. KHEDKAR R S, SONAWANE S S, WASEWAR K L. Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids [J]. Int Commun Heat Mass Transf, 2012, 39(5): 665–669. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2012.03.012.

    Article  Google Scholar 

  161. PAL B, PAL B. Influence of CuO nanostructures on the thermal conductivity of di water and ethylene glycol based nanofluids [J]. Part Sci Technol, 2015, 33(3): 224–228. DOI: https://doi.org/10.1080/02726351.2014.953647.

    Article  Google Scholar 

  162. BARBÉS B, PÁRAMO R, BLANCO E, CASANOVA C. Thermal conductivity and specific heat capacity measurements of CuO nanofluids [J]. J Therm Anal Calorim, 2014, 115(2): 1883–1891. DOI: https://doi.org/10.1007/s10973-013-3518-0.

    Article  Google Scholar 

  163. LIU Z H, YANG X F, GUO G L. Effect of nanoparticles in nanofluid on thermal performance in a miniature thermosyphon [J]. J Appl Phys, 2007, 102(1): 013526. DOI: https://doi.org/10.1063/1.2748348.

    Article  Google Scholar 

  164. YANG X, LIU Z. boiling heat transfer in the evaporator of a loop thermosyphon operating with CuO based aqueous nanofluid [J]. Int J Heat Mass Transf, 2012, 55(25, 26): 7375–7384. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.026.

    Article  Google Scholar 

  165. ASMAIE L, HAGHSHENASFARD M, MEHRABANI- ZEINABAD A, NASR ESFAHANY M. Thermal performance analysis of nanofluids in a thermosyphon heat pipe using CFD modeling [J]. Heat Mass Transf, 2013, 49(5): 667–678. DOI: https://doi.org/10.1007/s00231-013-1110-6.

    Article  Google Scholar 

  166. SARAFRAZ M M, HORMOZI F. Experimental study on the thermal performance and efficiency of a copper made thermosyphon heat pipe charged with alumina–glycol based nanofluids [J]. Powder Technol, 2014, 266: 378–387. DOI: https://doi.org/10.1016/j.powtec.2014.06.053.

    Article  Google Scholar 

  167. CHOUGULE S S, PRADESH M. Thermal performance of two phase thermosyphon flat-plate solar collectors using nanofluid [J]. J Sol Energy Eng, 2013, 136: 1–5. DOI: https://doi.org/10.1115/1.4025591.

    Article  Google Scholar 

  168. ZEINALI HERIS S, FALLAHI M, SHANBEDI M, AMIRI A. Heat transfer performance of two-phase closed thermosyphon with oxidized CNT/water nanofluids [J]. Heat Mass Transf, 2016, 52(1): 85–93. DOI: https://doi.org/10.1007/s00231-015-1548-9.

    Article  Google Scholar 

  169. AMIRI A, SADRI R, SHANBEDI M, AHMADI G, CHEW B T, KAZI S. Performance dependence of thermosyphon on the functionalization approaches: An experimental study on thermo-physical properties of graphene nanoplatelet- based water nanofluids [J]. Energy Convers Manag, 2015, 92: 322–330. DOI: https://doi.org/10.1016/j.enconman.2014.12.051.

    Article  Google Scholar 

  170. ASIRVATHAM L G, WONGWISES S, BABU J. Heat transfer performance of a glass thermosyphon using graphene–acetone nanofluid [J]. J Heat Transfer, 2015, 137(11): 111502. DOI: https://doi.org/10.1115/1.4030479.

    Article  Google Scholar 

  171. SHANBEDI M, HERIS S Z, BANIADAM M, AMIRI A, MAGHREBI M. Investigation of heat-transfer characterization of EDA-MWCNT/DI-water nanofluid in a two-phase closed thermosyphon [J]. Ind Eng Chem Res, 2012, 51(3): 1423–1428. DOI: https://doi.org/10.1021/ie202110g.

    Article  Google Scholar 

  172. SHANBEDI M, HERIS S Z, AMIRI A, BANIADAM M. Improvement in heat transfer of a two-phased closed thermosyphon using silver-decorated MWCNT/water [J]. J Dispers Sci Technol, 2013: 130905033551000. DOI: https://doi.org/10.1080/01932691.2013.833101.

    Google Scholar 

  173. KHANDEKAR S, JOSHI Y M, MEHTA B. Thermal performance of closed two-phase thermosyphon using nanofluids [J]. Int J Therm Sci, 2008, 47(6): 659–667. DOI: https://doi.org/10.1016/j.ijthermalsci.2007.06.005.

    Article  Google Scholar 

  174. CHEN Y J, WANG P Y, LIU Z H. Application of water-based SiO2 functionalized nanofluid in a loop thermosyphon [J]. Int J Heat Mass Transf, 2013, 56: 59–68. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.048.

    Article  Google Scholar 

  175. PARK Y, TANSHEN M R, NINE M J, CHUNG H, JEONG H. Characterizing pressure fluctuation into single-loop oscillating heat pipe [J]. Journal of Central South University, 2012, 19(9): 2578–2583. DOI: https://doi.org/10.1007/s11771-012-1313-x.

    Article  Google Scholar 

  176. XU R J, ZHANG X H, WANG R X, XU S H, WANG H S. Experimental investigation of a solar collector integrated with a pulsating heat pipe and a compound parabolic concentrator [J]. Energy Convers Manag, 2017, 148: 68–77. DOI: https://doi.org/10.1016/j.enconman.2017.04.045.

    Article  Google Scholar 

  177. KARGAR SHARIF ABAD H, GHIASI M, JAHANGIRI MAMOURI S, SHAFII M B. A novel integrated solar desalination system with a pulsating heat pipe [J]. Desalination, 2013, 311: 206–210. DOI: https://doi.org/10.1016/j.desal.2012.10.029.

    Article  Google Scholar 

  178. JALILIAN M, KARGARSHARIFABAD H, ABBASI GODARZI A, GHOFRANI A, SHAFII M. B. Simulation and optimization of pulsating heat pipe flat-plate solar collectors using neural networks and genetic algorithm: A semi-experimental investigation [J]. Clean Technol Environ Policy, 2016, 18(7): 2251–2264. DOI: https://doi.org/10.1007/s10098-016-1143-x.

    Article  Google Scholar 

  179. NAZARI M A, AHMADI M H, GHASEMPOUR R. A review on pulsating heat pipes: From solar to cryogenic applications [J]. Appl Energy, 2018, 222: 475–484. DOI: https://doi.org/10.1016/j.apenergy.2018.04.020.

    Article  Google Scholar 

  180. CUI X, ZHU Y, LI Z, SHUN S. Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe [J]. Appl Therm Eng, 2014, 65(1, 2):. 394–402. DOI: https://doi.org/10.1016/j.applthermaleng.2014.01.030.

    Article  Google Scholar 

  181. VENKATA SURESH J, BHRAMARA P. CFD analysis of multi turn pulsating heat pipe [J]. Mater Today Proc, 2017, 4(2): 2701–2710. DOI: https://doi.org/10.1016/j.matpr.2017.02.146.

    Article  Google Scholar 

  182. XUE Z H, QU W. Experimental and theoretical research on a ammonia pulsating heat pipe: New full visualization of flow pattern and operating mechanism study [J]. Int J Heat Mass Transf, 2017, 106: 149–166. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.042.

    Article  Google Scholar 

  183. KHEDKAR S G, PACHGHARE P R, MAHALLE A M. Effect of working fluid on thermal performance of closed loop pulsating heat pipe: A review [J]. National Conference on Innovative Paradigms in Engineering & Technolog, 2012, 2(3): 41–48. DOI: https://doi.org/www.researchgate.net/publication/254861913_Effect_of_Working_Fluid_on_Thermal_Performance_of_Closed_Loop_Pulsating_Heat_Pipe_A_Review.

    Google Scholar 

  184. ZHANG X M. Experimental study of a pulsating heat pipe using Fc-72, Ethanol, and water as working fluids [J]. Exp Heat Transf, 2004, 17(1): 47–67. DOI: https://doi.org/10.1080/08916150490246546.

    Article  Google Scholar 

  185. MA H B, WILSON C, YU Q, PARK K, CHOI U S, TIRUMALA M. An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe [J]. J Heat Transfer, 2006, 128(11): 1213–1216. DOI: https://doi.org/10.1115/1.2352789.

    Article  Google Scholar 

  186. WILSON C A. Experimental investigation of nanofluid oscillating heat pipes [C]// University of Missouri–Columbia, 2006. DOI: https://doi.org/mospace.umsystem.edu/xmlui/bitstream/handle/10355/4553/research.pdf?sequence=3&origin=publication_detail.

    Google Scholar 

  187. JIA H, JIA L, TAN Z. An experimental investigation on heat transfer performance of nanofluid pulsating heat pipe [J]. J Therm Sci, 2013, 22(5): 484–490. DOI: https://doi.org/10.1007/s11630-013-0652-8.

    Article  MathSciNet  Google Scholar 

  188. RUDRESHA S, KUMAR V. CFD analysis and experimental investigation on thermal performance of closed loop pulsating heat pipe using different nanofluids experiments apparatus and procedure [J]. Int J Adv Res, 2014, 2(8): 753–760. DOI: https://doi.org/www.journalijar.com/article/2552/cfd-analysis-and-experimental-investigation-on-thermal-performance-of-closed-loop-pulsating-heat-pipe-using-different-nanofluids/.

    Google Scholar 

  189. WANG S, LIN Z, ZHANG W, CHEN J. Experimental study on pulsating heat pipe with functional thermal fluids [J]. Int J Heat Mass Transf, 2009, 52(21, 22): 5276–5279. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.033.

    Article  Google Scholar 

  190. SHANBEDI M, ZEINALI HERIS S, BANIADAM M, AMIRI A. The effect of multi-walled carbon nanotube/water nanofluid on thermal performance of a two-phase closed thermosyphon [J]. Exp Heat Transf, 2013, 26(1): 26–40. DOI: https://doi.org/10.1080/08916152.2011.631078.

    Article  Google Scholar 

  191. HUMINIC G, HUMINIC A, FLEACA C, DUMITRACHE F, MORJAN I. Thermo-physical properties of water based SiC nanofluids for heat transfer applications [J]. Int Commun Heat Mass Transf, 2017, 84: 94–101. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2017.04.006.

    Article  Google Scholar 

  192. MOHAMMADI M, TASLIMIFAR M, HAGHAYEGH S, HSNNANI S K, SHAFII M B, SAIDI M H. Open-loop pulsating heat pipes charged with magnetic nanofluids: Powerful candidates for future electronic coolers [J]. Nanoscale Microscale Thermophys Eng, 2014, 18(1): 18–38. DOI: https://doi.org/10.1080/15567265.2013.787570.

    Article  Google Scholar 

  193. GOSHAYESHI H R, GOODARZI M, DAHARI M. Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe [J]. Exp Therm Fluid Sci, 2015, 68: 663–668. DOI: https://doi.org/10.1016/j.expthermflusci.2015.07.014.

    Article  Google Scholar 

  194. WANNAPAKHE S, RITTIDECH S, BUBPHACHOT B, WATANABE O. Heat transfer rate of a closed-loop oscillating heat pipe with check valves using silver nanofluid as working fluid [J]. J Mech Sci Technol, 2009, 23(6): 1576–1582. DOI: https://doi.org/10.1007/s12206-009-0424-2.

    Article  Google Scholar 

  195. GONZALEZ M, KIM Y J. Experimental study of a pulsating heat pipe using nanofluid as a working fluid [C]// In Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). 2014: 541–546. DOI: https://doi.org/10.1109/ITHERM.2014.6892328.

    Google Scholar 

  196. LIN Y H, KANG S W, CHEN H L. Effect of silver nano-fluid on pulsating heat pipe thermal performance [J]. Appl Therm Eng, 2008, 28(11, 12): 1312–1317. DOI: https://doi.org/10.1016/j.applthermaleng.2007.10.019.

    Article  Google Scholar 

  197. PARK K, MA H. Nanofluid effect on the heat transport capability in a well-balanced oscillating heat pipe [J]. J Thermophys Heat Transf, 2007, 21(2): 443–445. DOI: https://doi.org/10.2514/1.22409.

    Article  Google Scholar 

  198. KARTHIKEYAN V K, RAMACHANDRAN K, PILLAI B C, BRUSLY SOLOMON A. Effect of nanofluids on thermal performance of closed loop pulsating heat pipe [J]. Exp Therm Fluid Sci, 2014, 54: 171–178. DOI: https://doi.org/10.1016/j.expthermflusci.2014.02.007.

    Article  Google Scholar 

  199. TANSHEN M R, LEE S, KIM J, KANG D, NOH J, CHUNG H S, JEONG H M, HUH S. Pressure distribution inside oscillating heat pipe charged with aqueous Al2O3 nanoparticles, MWCNTs and their hybrid [J]. Journal of Central South University, 2014, 21(6): 2341–2348. DOI: https://doi.org/10.1007/s11771-014-2186-y.

    Article  Google Scholar 

  200. TANSHEN M R, MUNKHBAYAR B, NINE M J, CHUNG H, JEONG H. Effect of functionalized MWCNTs/water nanofluids on thermal resistance and pressure fluctuation characteristics in oscillating heat pipe [J]. Int Commun Heat Mass Transf, 2013, 48: 93–98. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2013.08.011.

    Article  Google Scholar 

  201. JI Y, WILSON C, CHEN H, MA H. Particle shape effect on heat transfer performance in an oscillating heat pipe [J]. Nanoscale Res Lett, 2011, 6(1): 296. DOI: https://doi.org/10.1186/1556-276X-6-296.

    Article  Google Scholar 

  202. ESFAHANI M R, LANGURI E M, NUNNA M R. Effect of particle size and viscosity on thermal conductivity enhancement of graphene oxide nanofluid [J]. Int Commun Heat Mass Transf, 2016, 76: 308–315. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2016.06.006.

    Article  Google Scholar 

  203. HOSSEIN KARIMI DARVANJOOGHI M, NASR ESFAHANY M. Experimental investigation of the effect of nanoparticle size on thermal conductivity of in-situ prepared silica–ethanol nanofluid [J]. Int Commun Heat Mass Transf, 2016, 77: 148–154. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2016.08.001.

    Article  Google Scholar 

  204. LEE S, CHOI S U S, LI S, EASTMAN J A. Measuring thermal conductivity of fluids containing oxide nanoparticles [J]. J Heat Transfer, 1999, 121(2): 280. DOI: https://doi.org/10.1115/1.2825978.

    Article  Google Scholar 

  205. CHOPKAR M, SUDARSHAN S, DAS P K, MANNA I. Effect of particle size on thermal conductivity of nanofluid [J]. Metall Mater Trans A, 2008, 39(7): 1535–1542. DOI: https://doi.org/10.1007/s11661-007-9444-7.

    Article  Google Scholar 

  206. JI Y, MA H, SU F, WANG G. Particle size effect on heat transfer performance in an oscillating heat pipe [J]. Exp Therm Fluid Sci, 2011, 35(4): 724–727. DOI: https://doi.org/10.1016/j.expthermflusci.2011.01.007.

    Article  Google Scholar 

  207. NAZARI M A, GHASEMPOUR R, AHMADI M H, HEYDARIAN G, SHAFII M B. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe [J]. Int Commun Heat Mass Transf, 2018, 91: 90–94. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2017.12.006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad H. Ahmadi or Marjan Goodarzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, M.A., Ahmadi, M.H., Sadeghzadeh, M. et al. A review on application of nanofluid in various types of heat pipes. J. Cent. South Univ. 26, 1021–1041 (2019). https://doi.org/10.1007/s11771-019-4068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4068-9

Key words

关键词

Navigation