Skip to main content
Log in

An analytical model to explore open-circuit voltage of a-Si:H/c-Si heterojunction solar cells

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The effect of the parameters on the open-circuit voltage, V OC of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V OC increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density (D it) for the open-circuit voltage (V OC), D crit,1it and D crit,2it (a few 1010 cm−2∙eV−1). V OC decreases remarkably when D it is higher than D crit,1it . To achieve high V OC, the interface states should reduce down to a few 1010 cm−2·eV−1. Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. V OC decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×1018 cm−3 to achieve high V OC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TSUNOMURA Y, YOSHIMINE Y, TAGUCHI M, BABA T, KINOSHITA T, KANNO H, SAKATA H, MARUYAMA E, TANAKA M. Twenty-two percent efficiency HIT solar cell [J]. Sol Energy Mater Sol Cells, 2009, 93: 670–673.

    Article  Google Scholar 

  2. WANG T H, WANG Q, PAGE M R, BAUER R E, CISZEK T F. Hydrogen passivation and junction formation on APIVT-deposited thin-layer silicon by hot-wire CVD [J]. Thin Solid Films, 2003, 430: 261–264.

    Article  Google Scholar 

  3. IKHMAYIES S J, AHMAD-BITAR R N. Using HF rather than NH4F as doping source for spray-deposited SnO2:F thin films [J]. Journal of Central South University, 2012, 19(3): 791–796.

    Article  Google Scholar 

  4. TANAKA Y, MATSUKIN, FUJIWARA H. Characterization of a-Si:H thin layers incorporated into textured a-Si:H/c-Si solar cell structures by spectroscopic ellipsometry using a tilt-angle optical configuration [J]. Thin Solid Films, 2014, 569: 64–69.

    Article  Google Scholar 

  5. PEHLIVAN Ö, MENDA D, KODOLBAS A O, ÖZDEMIR O, DUYGULU Ö, KUTLU K, TOMAK M. Structural and interfacial properties of large area n-a-Si:H/i-a-Si:H/p-c-Si heterojunction solar cells [J]. Materials Science in Semiconductor Processing, 2014, 22: 69–75

    Article  Google Scholar 

  6. KIM S K, LEE J C, PARK S J, KIM Y J, YOON K H. Effect of hydrogen dilution on intrinsic a-Si:H layer between emitter and Si wafer in silicon heterojunction solar cell [J]. Sol Energy Mater Sol Cells, 2008, 92: 298–301.

    Article  Google Scholar 

  7. MUÑOZ D, VOZ C, MARTIN I, ORPELLA A, PUIGDOLLERS J, ALCUBILLA R, VILLAR F, BERTOMEU J, ANDREU J, DAMON-LACOSTE J, ROCA I CABARROCAS P. Progress in a-Si:H/c-Si heterojunction emitters obtained by Hot-Wire CVD at 200 °C [J]. Thin Solid Films, 2008, 516: 761–764.

    Article  Google Scholar 

  8. VESCHETTI Y, MULLER J C, DAMON-LACOSTE J, ROCA I, CABARROCAS P, GUDOVSKIKH A S, KLEIDER J P, RIBEYRON P J, ROLLAND E. Optimisation of amorphous and polymorphous thin silicon layers for the formation of the front-side of heterojunction solar cells on p-type crystalline silicon substrates [J]. Thin Solid Films, 2006, 511/512: 543–547.

    Article  Google Scholar 

  9. DAUWE S, SCHMIDT J, HEZEL R. Very low surface recombination velocities on p-and n-type silicon wafers passivated with hydrogenated amorphous silicon films [C]// Conference Record of the Twenty-Ninth IEEE Louisiana. New Orleans: Photovoltaic Specialists Conference, 2002: 1246–1249.

    Google Scholar 

  10. FROITZHEIM A, BRENDEL K, ELSTNER L, FUHS W, KLIEFOTH K, SCHMIDT M. Interface recombination in heterojunctions of amorphous and crystalline silicon [J]. J Non-cryst Solids, 2002, 299/302: 663–667.

    Article  Google Scholar 

  11. CLEEF M W, RUBINELLI F A, RATH J K. Photocarrier collection in a-SiC:H/c-Si heterojunction solar cells [J]. J Non-cryst Solids, 1998, 227/230: 1291–1294.

    Article  Google Scholar 

  12. PAGE M R, IWANICZKO E, XU Y Q, ROYBAL L, HASOON F, WANG Q, CRANDALL R S. Amorphous/crystalline silicon heterojunction solar cells with varying i-layer thickness [J]. Thin Solid Films, 2011, 519: 4527–4530.

    Article  Google Scholar 

  13. NATH M, CHATTERJEE P, DAMON-LACOSTE J, ROCA I, CABARROCAS P. Criteria for improved open-circuit voltage in a-SiH/c-Si(P) front heterojubnction solar cells [J]. J Appl Phys, 2008, 103: 034506.

    Article  Google Scholar 

  14. WANG Q, PAGE M R, IWANICZKO E, XU Y Q, ROYBAL L, BAUER R, TO B, YUAN H C, DUDA A, YAN Y F. Crystal silicon heterojunction solar cells by hot wire CVD [C]// Proceedings of the 33rd PVSEC-IEEE. San Diego, USA: IEEE, 2008: 1–5.

    Google Scholar 

  15. DAMIAN P P, BIVOUR M, HERMLE M, STEFAN W G. Amorphous silicon carbide heterojunction solar cells on p-type substrates [J]. Thin Solid Films, 2011, 519: 2550–2554.

    Article  Google Scholar 

  16. SCHMIDT M, KORTE L, LAADES A, STANGL R, SCHUBERT C, ANGERMANN H, CONRAD E, MAYDELL K V. Physical aspects of a-Si:H/c-Si hetero-junction solar cells [J]. Thin Solid Films, 2007, 515: 7475–7480.

    Article  Google Scholar 

  17. TUCCI M, DELLA NOCE M, BOBEICO E, ROCA F, de CESARE G, PALMA F. Comparison of amorphously crystalline heterojunction solar cells based on n-and p-type crystalline silicon [J]. Thin Solid Films, 2004, 451/452: 355–360.

    Article  Google Scholar 

  18. VOZ C, MUÑOZ D, FONRODONA M, MARTIN I, PUIGDOLLERS J, ALCUBILLA R, ESCARRE J, BERTOMEU J, ANDREU J. Bifacial heterojunction silicon solar cells by hot-wire CVD with open-circuit voltages exceeding 600 mV [J]. Thin Solid Films, 2006, 511/512: 415–419.

    Article  Google Scholar 

  19. ZHONG C L, LUO L E, TAN H S, GENG K W. Band gap optimization of the window layer in silicon heterojunction solar cells [J]. Solar Energy, 2014, 8: 570–575

    Article  Google Scholar 

  20. STANGL R, FROITZHEIM A, KRIEGEL M, BRAMMER T, KIRSTE S, ELSTNER L, STIEBIG H, SCHMIDT M, FUHS W. AFORS-HET, a numerical PC-program for simulation of heterojunction solar cells, Version 1.1 (open-source on demand), to be distributed for public use [C]// Proc 19th European Photovoltaic. France: Solar Energy Conference, 2004: 1497–1500.

    Google Scholar 

  21. SCHMIDT M, SCHOEPKE A, KORTE L, MLICH O, FUHS W. Density distribution of gap states in extremely thin a-Si:H layers on crystalline silicon wafers [J]. J Non-cryst Solids, 2004, 211: 338–340.

    Google Scholar 

  22. ZHONG C L, YAO R H, GENG K W. Characterization of interface states in a-Si-H/c-Si heterojunctions by an expression of the theoretical diffusion capacitance [J]. J Phys D: Appl Phys, 2010, 43: 495102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-liang Zhong  (钟春良).

Additional information

Foundation item: Project(11374094) supported by the National Natural Science Foundation of China; Project(2013HZX23) supported by Natural Science Foundation of Hunan University of Technology, China; Project(2015JJ3060) supported by Natural Science Foundation of Hunan Province of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Cl., Geng, Kw., Luo, Le. et al. An analytical model to explore open-circuit voltage of a-Si:H/c-Si heterojunction solar cells. J. Cent. South Univ. 23, 598–603 (2016). https://doi.org/10.1007/s11771-016-3106-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3106-0

Keywords

Navigation