Skip to main content
Log in

Strength and thermal behavior of low weight foam geopolymer using circulating fluidized bed combustion fly ash

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash (CFA) was reported. Foam geopoymers were prepared with different amounts of foam agent and different SiO2/Al2O3 molar ratios of 3.1, 3.4, and 3.8. The mechanical, thermo-physical properties and microstructure of the foam geopolymers before and after exposure to elevated temperature of 800, 1000, and 1200 °C were investigated. The specimen with SiO2/Al2O3 molar ratio of 3.8 exhibits the highest compressive strength, better microstructure and dimension stability before and after firing. Carnegeite, nepheline, and zeolite crystalline phases appearing after exposure may contribute to the good post-exposure strength. Low weight foam geopolymer using CFA can increase strength and maintain higher stability as high as 1000 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DAVIDOVITS J. Geopolymer chemistry and applications [M]. Saint-Quentin (France): Institute Geopolymer, 2008: 2–20.

    Google Scholar 

  2. KOMNITSAS K, ZAHARAKI D. Geopolymerisation: A review and prospects for the minerals industry [J]. Minerals Engineering, 2007, 20: 1261–1277.

    Article  Google Scholar 

  3. DUXSON P, PROVIS J L, LUKEY G C, van DEVENTER J S J. The role of inorganic polymer technology in the development of ‘green concrete’ [J]. Cement and Concrete Research, 2007, 37(12): 1590–1597.

    Article  Google Scholar 

  4. LEE B K. Solid-gel interactions in geopolymers [D]. Melbourne: University of Melbourne, 2002.

    Google Scholar 

  5. SIDDIQUE R, KHAN M I. Supplementary cementing materials [M]. New York: Springer, 2011: 1–66.

    Google Scholar 

  6. SHI X S, COLLINS F G, ZHAO X L, WANG Q Y. Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete [J]. Journal of Hazardous Materials, 2012, 237–238: 20–29.

    Article  Google Scholar 

  7. HAJI-ESMAEILI H. Admixtures for use in geopolymers [D]. Thunder Bay: Lakehead University, 2012.

    Google Scholar 

  8. NATALI A, MANZI S, BIGNOZZI M C. Novel fiber-reinforced composite materials based on sustainable geopolymer matrix [J]. Procedia Engineering, 2011, 21: 1124–1131.

    Article  Google Scholar 

  9. LIU Ze, SHAO Ning-ning, WANG Dong-min, QIN Jun-feng, HUANG Tian-yong, SONG Wei, LIN Mu-xi, YUAN Jin-sha, WANG Zhen. Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash [J]. International Journal of Minerals: Metallurgy and Materials, 2014, 21(1): 89–93.

    Google Scholar 

  10. ABDULLAH M M A B, HUSSIN K, BNHUSSAIN M, ISMAIL K N, YAHYA Z, RAZAK R A. Fly ash-based geopolymer lightweight concrete using foaming agent [J]. International Journal of Molecular Sciences, 2012, 13: 7186–7198.

    Article  Google Scholar 

  11. THO-IN T, SATA V, CHINDAPRASIRT P, JATURAPITAKKUL C. Pervious high-calcium fly ash geopolymer concrete [J]. Construction and Building Materials, 2012, 30: 366–371.

    Article  Google Scholar 

  12. RIAHI S, NAZARI A. The effects of nanoparticles on early age compressive strength of ash-based geopolymers [J]. Ceramics International, 2012, 38(6): 4467–4476.

    Article  Google Scholar 

  13. DUXSON P, LUKEY G C, van DEVENTER J S J. Thermal evolution of metakaolin geopolymers: Part 1-Physical evolution [J]. Journal of Non-Crystalline Solids, 2006, 352: 5541–5555.

    Article  Google Scholar 

  14. DUXSON P, LUKEY G C, VAN DEVENTER J S J. Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity [J]. Industrial & Engineering Chemistry Research, 2006, 45: 7781–7788.

    Article  Google Scholar 

  15. PROVIS J L, van DEVENTER J S J. Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry [J]. Journal of Materials Science, 2007, 42: 2974–2981.

    Article  Google Scholar 

  16. NATH S K, KUMAR S. Influence of iron making slags on strength and microstructure of fly ash geopolymer [J]. Construction and Building Materials, 2013, 38: 924–930.

    Article  Google Scholar 

  17. ZHANG Yao-jun, WANG Ya-chao, XU De-long, LI Sheng. Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin [J]. Materials Science and Engineering A, 2010, 527: 6574–6580.

    Article  Google Scholar 

  18. BARBOSA V F F, MACKENZIE K J D. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate [J]. Materials Research Bulletin, 2003, 38(2): 319–331.

    Article  Google Scholar 

  19. HE Pei-gang, JIA De-chang, LIN Tie-song, WANG Mei-rong, ZHOU Yu. Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites [J]. Ceramics International, 2010, 36: 1447–1453.

    Article  Google Scholar 

  20. KONG D L Y, SANJAYAN J G, SAGOE-CRENTSIL K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures [J]. Cement and Concrete Research, 2007, 37: 1583–1589.

    Article  Google Scholar 

  21. BAKHAREV T. Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing [J]. Cement and Concrete Research, 2006, 36: 1134–1147.

    Article  Google Scholar 

  22. RICKARD W D A, TEMUUJIN J, van RIESSEN A. Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition [J]. Journal of Non-Crystalline Solids, 2012, 358: 1830–1839.

    Article  Google Scholar 

  23. DOMBROWSKI K, BUCHWALD A, WEIL M. The influence of calcium content on the structure and thermal performance of fly ash based geopolymers [J]. Journal of Materials Science, 2007, 42(9): 3033–3043.

    Article  Google Scholar 

  24. RICKARD W D A, VICKERS L, van RIESSEN A. Performance of fibre reinforced, low density metakaolin geopolymers under simulated fire conditions [J]. Applied Clay Science, 2012, 73: 71–77.

    Article  Google Scholar 

  25. ZHAO Ye-long, YE Jun-wei, LU Xiao-bin, LIU Man-gang, LIN Yuan, GONG Wei-tao, NING Gui-ling. Preparation of sintered foam materials by alkali-activated coal fly ash [J]. Journal of Hazardous Materials, 2010, 174: 108–112.

    Article  Google Scholar 

  26. PRUDHOMME E, MICHAUD P, JOUSSEIN E, CLACENS J M, ARII-CLACENS S, SOBRADOS I, PEYRATOUT C, SMITH A, SANZ J, ROSSIGNOL S. Structural characterization of geomaterial foams-Thermal behavior [J]. Journal of Non-Crystalline Solids, 2011, 357: 3637–3647.

    Article  Google Scholar 

  27. MASI G, RICKARD W D A, VICKERS L, BIGNOZZI M C, van RIESSEN A. A comparison between different foaming methods for the synthesis of light weight geopolymers [J]. Ceramics International, 2014, 40(9): 13891–13902.

    Article  Google Scholar 

  28. LIEFKE E. Industrial applications of foamed inorganic polymers[C]// DAVIDOVITS J, DAVIDOVITS R, JAMES C. Proceeding of Geopolymer’ 99, Second International Conference. France, 1999: 189–195.

    Google Scholar 

  29. KHALE D, CHAUDHARY R. Mechanism of geopolymerization and factors influencing its development: A review [J]. Journal of Materials Science, 2007, 42: 729–746.

    Article  Google Scholar 

  30. SILVA P D, SAGOE-CRENSTIL K. Medium-term phase stability of Na2O-Al2O3-SiO2-H2O geopolymer systems [J]. Cement and Concrete Research, 2008, 38: 870–876.

    Article  Google Scholar 

  31. LIU Ze, SHAO Ning-ning, HUANG Tian-yong, QIN Jun-feng, WANG Dong-min, YANG Yu. Effect of SiO2/Na2O ratio on the properties of the foam geopolymer using circulating fluidized bed fly ash [J]. International Journal of Minerals: Metallurgy and Materials, 2014, 21(6): 620–626.

    Google Scholar 

  32. ZHANG Zu-hua, PROVIS J L, REID A, WANG Hao. Geopolymer foam concrete: An emerging material for sustainable construction [J]. Construction and Building Materials, 2014, 56: 113–127.

    Article  Google Scholar 

  33. KONG D L Y, SANJAYAN J G, SAGOE-CRENSTIL K. Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures [J]. Journal of Materials Science, 2008, 43(3): 824–831.

    Article  Google Scholar 

  34. RICKARD W D A, WILLIAMS R, TEMUUJIN J, van RIESSEN A. Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications [J]. Materials Science and Engineering A, 2011, 528: 3390–3397.

    Article  Google Scholar 

  35. FERNANDEZ-JIMENEZ A, PALOMO A, PASTOR J Y, MARTIN A. New cementitious materials based on alkali-activated fly ash: Performance at high temperatures [J]. Journal of the American Ceramic Society, 2008, 91(10): 3308–3314.

    Article  Google Scholar 

  36. WANG Hong-ling, LI Hai-hong, YAN Feng-yuan. Synthesis and mechanical properties of metakaolinite-based geopolymer [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 268: 1–6.

    Article  Google Scholar 

  37. DUXSON P, LUKEY G C, van DEVENTER J S J. Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C [J]. Journal of Materials Science, 2007, 42(9): 3044–3054.

    Article  Google Scholar 

  38. DUXSON P, LUKEY G C, VAN DEVENTER J S J. The thermal evolution of metakaolin geopolymers: Part 2-Phase stability and structural development [J]. Journal of Non-Crystalline Solids, 2007, 353: 2186–2200.

    Article  Google Scholar 

  39. RICKARD W D A, van RIESSEN A, WALLS P. Thermal character of geopolymers synthesized from class F fly ash containing high concentrations of iron and a-quartz [J]. International Journal of Applied Ceramic Technology, 2010, 7(1): 81–88.

    Article  Google Scholar 

  40. PROVIS J L, HARREX R M, BERNAL S A, DUXSON P, van DEVENTER J S J. Dilatometry of geopolymers as a means of selecting desirable fly ash sources [J]. Journal of Non-Crystalline Solids, 2012, 358: 1930–1937.

    Article  Google Scholar 

  41. RAHIER H, WASTIELS J, BIESEMANS M, WILLEM R, van ASSCHE G, van MELE B. Reaction mechanism, kinetics and high temperature transformations of geopolymers [J]. Journal of Materials Science, 2007, 42: 2982–2996.

    Article  Google Scholar 

  42. BARBOSA V F F, MACKENZIE K J D, THAUMATURGO C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers [J]. International Journal of Inorganic Materials, 2000, 2(4): 309–317.

    Article  Google Scholar 

  43. GUNZLER H, GREMLICH H. IR spectroscopy: An introduction [M]. Germany: Wiley-VCH Verlag GmbH, 2002: 203–214.

    Google Scholar 

  44. CHINDAPRASIRT P, JATURAPITAKKUL C, CHALEE W, RATTANASAK U. Comparative study on the characteristics of fly ash and bottom ash geopolymers [J]. Waste Management, 2009, 29: 539–543.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze Liu  (刘泽).

Additional information

Foundation item: Project(20120023110011) supported by Doctoral Program of Higher Education of China; Projects(2009KH09, 2009QH02) supported by the Fundamental Research Funds for the Central Universities of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Shao, Nn., Qin, Jf. et al. Strength and thermal behavior of low weight foam geopolymer using circulating fluidized bed combustion fly ash. J. Cent. South Univ. 22, 3633–3640 (2015). https://doi.org/10.1007/s11771-015-2904-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2904-0

Keywords

Navigation