Skip to main content
Log in

Carbon stock of larch plantations and its comparison with an old-growth forest in northeast China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

The overall goal of this study was to understand carbon (C) stock dynamics in four different-aged Japanese larch (Larix kaempferi) plantations in Northeast China that were established after clear-cutting old-growth Korean pine deciduous forests. Four Japanese larch plantations which were at 10, 15, 21, and 35 years old and an old-growth Korean pine deciduous forest which was 300 years old in Northeast China were selected and sampled. We compared the C pools of biomass (tree, shrub and herb), litterfall (LF), and soil organic carbon (SOC) among them. The biomass C stock of larch plantation at 10, 15, 21, and 35 years old was 26.8, 37.9, 63.6, and 83.2 Mg/ha, respectively, while the biomass C stock of the old-growth Korean pine deciduous forest was 175.1 Mg/ha. The SOC stock of these larch plantations was 172.1, 169.7, 140.3, and 136.2 Mg/ha respectively, and SOC stock of 170.4 Mg/ha in the control of old-growth forest. The biomass C stock increased with stand age of larch plantations, whereas SOC stock decreased with age, and C stock of LF did not change significantly (P > 0.05). The increase of biomass C offset the decline of SOC stock with age, making total carbon stock (TCS) of larch plantations stable from stand ages of 10–35 years. The TCS in larch plantations was much smaller than that in the old-growth forest, suggesting that the conversion of old-growth forests to young larch plantations releases substantial C into the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augustin L, Barbante C, Barnes P et al., 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429(6992): 623–628. doi: 10.1038/nature02599

    Article  Google Scholar 

  • Chang S J, 2013. Solving the problem of carbon dioxide emissions. Forest Policy and Economics, 35(5): 92–97. doi: 10.1016/j.forpol.2013.06.013

    Article  Google Scholar 

  • Chen Chuanguo, Zhu Junfeng, 1989. Manual of the Main Forest Biomass of Northeast China. Beijing: China Forestry Publishing House, 1–14. (in Chinese)

    Google Scholar 

  • Chen F S, Zeng D H, Fahey T J et al., 2010. Organic carbon in soil physical fractions under different-aged plantations of Mongolian pine in semi-arid region of Northeast China. Applied Soil Ecology, 44(1): 42–48. doi: 10.1016/j.apsoil.2009.09.003

    Article  Google Scholar 

  • Chen G S, Yang Y S, Xie J S et al., 2005. Conversion of a natural broad-leafed evergreen forest into pure plantation forests in a subtropical area: effects on carbon storage. Annals of Forest Science, 62(7): 659–668. doi: 10.1051/forest:2005073

    Article  Google Scholar 

  • Chen Lixin, Xiao Yang, 2006. Evolution and evaluation of soil fertility in forest land in Larix gmelinii plantations at different development stages in Daxinganling forest region. Science of Soil and Water Conservation, 4(5): 50–55. (in Chinese)

    Google Scholar 

  • Chen X W, Li B L, 2003. Change in soil carbon and nutrient storage after human disturbance of a primary Korean pine forest in Northeast China. Forest Ecology and Management, 186(1–3): 197–206. doi: 10.1016/S0378-1127(03)00258-5

    Article  Google Scholar 

  • Dai L M, Shao G F, Chen G et al., 2003. Forest cutting and regeneration methodology on Changbai Mountain. Journal of Forestry Research, 14(1): 56–60. doi: 10.1007/BF02856763

    Article  Google Scholar 

  • Dai L M, Wu G, Zhao J Z et al., 2002. Carbon cycling of alpine tundra ecosystems on Changbai Mountain and its comparison with arctic tundra. Science in China Series D: Earth Sciences, 45(10): 903–910.doi: 10.1360/02yd9089

    Article  Google Scholar 

  • Dixon R K, Solomon A M, Brown S et al., 1994. Carbon pools and flux of global forest ecosystems. Science, 263(5144): 185–190. doi: 10.1126/science.263.5144.185

    Article  Google Scholar 

  • Fahey T J, Woodbury P B, Battles J J et al., 2009. Forest carbon storage: ecology, management, and policy. Frontiers in Ecology and the Environment, 8(5): 245–252. doi: 10.1890/080169

    Article  Google Scholar 

  • Finér L, Mannerkoski H, Piirainen S et al., 2003. Carbon and nitrogen pools in an old-growth, Norway spruce mixed forest in eastern Finland and changes associated with clear-cutting. Forest Ecology and Management, 174(1–3): 51–63. doi: 10.1016/S0378-1127(02)00019-1

    Article  Google Scholar 

  • Gren I M, Carlsson M, 2013. Economic value of carbon sequestration in forests under multiple sources of uncertainty. Journal of Forest Economics, 19(2): 174–189. doi: 10.1016/j.jfe.2013.01.002

    Article  Google Scholar 

  • Gu H Y, Dai L M, Wu G et al., 2006. Estimation of forest volumes by integrating Landsat TM imagery and forest inventory data. Science in China Series E: Technological Sciences, 49(supp.1): 54–62. doi: 10.1007/s11431-006-8107-z

    Article  Google Scholar 

  • Hao Z Q, Yu D Y, Li F et al., 2004. Forest resources variation along with the main rivers in typical forest region of Changbai Mountain. Journal of Forestry Research, 15(2): 101–106. doi: 10.1007/BF02856742

    Article  Google Scholar 

  • Harmon M E, Chen H, 1991. Coarse woody debris dynamics in two old-growth ecosystems: comparing a deciduous forest in China and conifer forest in Oregon. BioScience, 41(9): 604–610.doi: 10.2307/1311697

    Article  Google Scholar 

  • Harmon M E, Ferrell W K, Franklin J F, 1990. Effects of C storage of conversion of old-growth forests to young forests. Science, 247(4943): 699–702. doi: 10.1126/science.247.4943.699

    Article  Google Scholar 

  • Hilli S, Stark S, Derome J, 2008. Carbon quality and stocks in organic horizons in boreal forest soils. Ecosystems, 11(2): 270–282. doi: 10.1007/s10021-007-9121-0

    Article  Google Scholar 

  • Hirano T, Hirata R, Fujinuma Y et al., 2003. CO2 and water vapor exchange of a larch forest in northern Japan. Tellus B, 55(2): 244–257. doi: 10.1034/j.1600-0889.2003.00063.x

    Article  Google Scholar 

  • Hollinger D, Kelliher F, Byers J et al., 1994. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology, 75(1): 134–150. doi: 10.2307/1939390

    Article  Google Scholar 

  • Houghton R A, 2005. Aboveground forest biomass and the global carbon balance. Global Change Biology, 11(6): 945–958. doi: 10.1111/j.1365-2486.2005.00955.x

    Article  Google Scholar 

  • Hu H F, Wang G G, 2008. Changes in forest biomass carbon storage in the South Carolina Piedmont between 1936 and 2005. Forest Ecology and Management, 255(5–6): 1400–1408. doi: 10.1016/j.foreco.2007.10.064

    Article  Google Scholar 

  • Humphreys E, Black T, Morgenstern K et al., 2006. Carbon dioxide fluxes in coastal Douglas-fir stands at different stages of development after clearcut harvesting. Agricultural and Forest Meteorology, 140(1–4): 6–22. doi: 10.1016/j.agrformet.2006.03.018

    Article  Google Scholar 

  • IPCC(Intergovernmental Panel of Climate Change), 2000. Land Use, Land-Use Change and Forestry, Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1–364.

    Google Scholar 

  • IPCC(Intergovernmental Panel of Climate Change), 2007. Summary for Policymaker, in: Climate Change 2007: The Physical Science Basis. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 339–378.

    Google Scholar 

  • Janisch J E, Harmon M E, 2002. Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity. Tree Physiology, 22(2–3): 77–89. doi: 10.1093/treephys/22.2-3.77

    Article  Google Scholar 

  • Jiang Yanling, Zhou Guangsheng, 2002. Carbon balance of Larix Gmelinii forest and impacts of management practices. Acta Phytoecologica Sinica, 26(3): 317–322. (in Chinese)

    Google Scholar 

  • Jomura M, Wang W J, Masyagina O V et al., 2010. Carbon dynamics of larch plantations in northeastern China and Japan. Permafrost Ecosystems Ecological Studies, 209(1): 385–411. doi: 10.1007/978-1-4020-9693-8_20

    Article  Google Scholar 

  • Lamlom S, Savidge R, 2003. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass and Bioenergy, 25(4): 381–388. doi: 10.1016/S0961-9534(03)00033-3

    Article  Google Scholar 

  • Li S, Asanuma J, Kotani A et al., 2005. Year-round measurements of net ecosystem CO2 flux over a montane larch forest in Mongolia. Journal of Geophysical Research, 110(D9): D09303. doi: 10.1029/2004JD005453

    Article  Google Scholar 

  • Lichter J, Billings S A, Ziegler S E et al., 2008. Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment. Global Change Biology, 14(12): 2910–2922. doi: 10.1111/j.1365-2486.2008.01701.x

    Article  Google Scholar 

  • Liu Shirong, Li Chunyang, 1993. Nutrient cycling and stability of soil fertility in larch plantation in the eastern part of northern China. Journal of Northeast Forestry University, 21(2): 19–24. (in Chinese)

    Google Scholar 

  • Luyssaert S, Schulze E D, Börner A et al., 2008. Old-growth forests as global carbon sinks. Nature, 455(7210): 213–215. doi: 10.1038/nature07276

    Article  Google Scholar 

  • Moore I I I B, Braswell J B, 1994. Planetary metabolism: understanding the carbon cycle. AMBIO, 23(1): 4–12.

    Google Scholar 

  • Nunery J S, Keeton W S, 2010. Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products. Forest Ecology and Management, 259(8): 1363–1375. doi: 10.1016/j.foreco.2009.12.029

    Article  Google Scholar 

  • Pan Jianping, Wang Huazhang, Yang Xiuqin, 1997. Research state and advance on soil degradation under larch plantations. Journal of Northeast Forestry University (Natural Science Edition), 25(2): 59–63. (in Chinese)

    Google Scholar 

  • Piirainen S, Finer L, Mannerkoski H et al., 2002. Effects of forest clear-cutting on the carbon and nitrogen fluxes through podzolic soil horizons. Plant and Soil, 239(2): 301–311. doi: 10.1023/A:1015031718162

    Article  Google Scholar 

  • Qi Guang, Wang Qingli, Wang Xinchuang et al., 2011. Vegetation carbon storage in Larix gmelinii plantations in Great Xing’an Mountains. Chinese Journal of Applied Ecology, 22(2): 273–279. (in Chinese)

    Google Scholar 

  • Qi Guang, Wang Qingli, Wang Xinchuang et al., 2013. Soil organic carbon storage in different aged Larix gmelinii plantations in Great Xing’an Mountains of Northeast China. Chinese Journal of Applied Ecology, 24(1): 10–16. (in Chinese)

    Google Scholar 

  • Ren H, Chen H, Li Z A et al., 2010. Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in southern China. Plant and Soil, 327(1–2): 279–291. doi: 10.1007/s11104-009-0053-7

    Article  Google Scholar 

  • Schaich H, Plieninger T, 2013. Land ownership drives stand structure and carbon storage of deciduous temperate forests. Forest Ecology and Management, 305(19): 146–157. doi: 10.1016/j.foreco.2013.05.013

    Article  Google Scholar 

  • Shanin V, Komarov A, Khoraskina Y et al., 2013. Carbon turnover in mixed stands: modelling possible shifts under climate change. Ecological Modelling, 251(4): 232–245. doi: 10.1016/j.ecolmodel.2012.12.015

    Article  Google Scholar 

  • Sharrow S, Ismail S, 2004. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agroforestry Systems, 60(2): 123–130. doi: 10.1023/B: AGFO.0000013267.87896.41

    Article  Google Scholar 

  • Simon N, Montes F, Diaz P E et al., 2013. Spatial distribution of the soil organic carbon pool in a Holm oak dehesa in Spain. Plant and Soil, 366(1–2): 537–549. doi: 10.1007/s11104-012-1443-9

    Article  Google Scholar 

  • Smolander A, Priha O, Paavolainen L et al., 1998. Nitrogen and carbon transformations before and after clear-cutting in repeatedlyN-fertilized and limed forest soil. Soil Biology and Biochemistry, 30(4): 477–490. doi: 10.1016/S0038-0717(97)00141-7

    Article  Google Scholar 

  • Sommers W T, Loehman R A, Hardy C C, 2014. Wild land fire emissions, carbon, and climate: science overview and knowledge needs. Forest Ecology and Management, 317(SI): 1–8. doi: 10.1016/j.foreco.2013.12.014

    Article  Google Scholar 

  • State Forestry Administration, 1986. Fast Growing and High Yield Plantation of Olga Bay Larch (Larix olgensis) and Dahurian Larch (Larix gmelini). Beijing: State Forestry Administration. (in Chinese)

    Google Scholar 

  • Sun Yujun, Zhang Jun, Han Aihui et al., 2007. Biomass and carbon pool of Larix gmelini young and middle age forest in Xing’an Mountains Inner Mongolia. Acta Ecologica Sinica, 27(5): 1756–1762. (in Chinese)

    Google Scholar 

  • Wang C M, Hua O Y, Shao B et al., 2006. Soil carbon changes following afforestation with Olga Bay larch (Larix olgensis Henry) in northeastern China. Journal of Integrative Plant Biology, 48(5): 503–512. doi: 10.1111/j.1744-7909.2006.00264.x

    Article  Google Scholar 

  • Wang H, Liu S R, Wang J X et al., 2013. Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China. Forest Ecology and Management, 300: 4–13. doi: 10.1016/j.foreco.2012.04.005

    Article  Google Scholar 

  • Wang H, Saigusa N, Yamamoto S et al., 2004. Net ecosystem CO2 exchange over a larch forest in Hokkaido, Japan. Atmospheric Environment, 38(40): 7021–7032. doi: 10.1016/j.atmosenv.2004.02.071

    Article  Google Scholar 

  • Wang Xiaoke, Feng Zongwei, Ouyang Zhiyun, 2001. Vegetation carbon storage and density of forest ecosystems in China. Chinese Journal of Applied Ecology, 12(1): 13–16. (in Chinese)

    Google Scholar 

  • Wang Xuejun, Huang Guosheng, Sun Yujun et al., 2008. Forest carbon storage and dynamics in Liaoning Province from 1984 to 2000. Acta Ecologica Sinica, 28(10): 4757–4764. (in Chinese)

    Google Scholar 

  • Wang Y F, Fu B J, Lu Y H et al., 2010. Local-scale spatial variability of soil organic carbon and its stock in the hilly area of the Loess Plateau, China. Quatenary Research, 73(1): 70–76. doi: 10.1016/j.yqres.2008.11.006

    Article  Google Scholar 

  • Wei X, Kimmins J P, Zhou G, 2003. Disturbances and the sustainability of long-term site productivity in lodgepole pine forests in the central interior of British Columbia—an ecosystem modeling approach. Ecological Modelling, 164(2–3): 239–256. doi: 10.1016/S0304-3800(03)00062-0

    Article  Google Scholar 

  • Xie J, Chen J Q, Sun G et al., 2014. Long-term variability and environmental control of the carbon cycle in an oak-dominated temperate forest. Forest Ecology and Management, 313(3): 319–328. doi: 10.1016/j.foreco.2013.10.032

    Article  Google Scholar 

  • Yang X, Xu M, 2003. Biodiversity conservation in Changbai Mountain Biosphere Reserve, northeastern China: status, problem, and strategy. Biodiversity and Conservation, 12(5): 883–903. doi: 10.1023/A:1022841107685

    Article  Google Scholar 

  • Yang Y, Mohammat A, Feng J et al., 2007. Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry, 84(2): 131–141. doi: 10.1007/s10533-007-9109-z

    Article  Google Scholar 

  • Yin Mingfang, Zhao Lin, Chen Xiaofei et al., 2008. Carbon storage maturity age of Larix olgenisis and L. kaempferi. Chinese Journal of Applied Ecology, 19(12): 2567–2571. (in Chinese)

    Google Scholar 

  • Yin Xiuqin, Zhong Weiyan, Wang Haixia et al., 2002. Decomposition of forest defoliation and role of soil animals in Xiao Hinggan Mountains. Geographical Research, 21(6): 689–699. (in Chinese)

    Google Scholar 

  • You W Z, Wei W J, Zhang H D et al., 2013. Temporal patterns of soil CO2 efflux in a temperate Korean Larch (Larix olgensis Herry.) plantation, Northeast China. Trees, 27(5): 1417–1428. doi: 10.1007/s00468-013-0889-6

    Article  Google Scholar 

  • Yuan Weiyang, Li Xianwei, Zhang Jian et al., 2009. Preliminary studies on carbon reserves of litterfall and fine root in an age series of Eucalyptus grandis plantation. Forest Research, 22(3): 385–389. (in Chinese)

    Google Scholar 

  • Zhong Lei, 2009. The Response of Ecosystem Carbon Density to Harvesting Disturbance in Broadleaved-Korean Pine Mixed Forest in Changbai Mountain. Beijing: Chinese Academy of Sciences, 37–125. (in Chinese)

    Google Scholar 

  • Zhou G Y, Guan L L, Wei X H et al., 2008. Factors influencing leaf litter decomposition: an intersite decomposition experiment across China. Plant and Soil, 311(1–2): 61–72. doi: 10.1007/s11104-008-9658-5

    Article  Google Scholar 

  • Zhou Yurong, Yu Zhenliang, Zhao Shidong, 2000. Carbon storage and budget of major Chinese forest types. Acta Phytoecologica Sinica, 24(5): 518–522. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Dai.

Additional information

Foundation item: Under the auspices of National Key Technologies Research and Development Program of China (No. 2012BAD22B04), National Science Foundation Grant (No. DBI-0821649), Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q1-0501), Research Foundation of Science and Technology Department of Henan Province (No. 142106000090), High Level Talent Project of Pingdingshan University (No. 2011009/G)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, G., Chen, H., Zhou, L. et al. Carbon stock of larch plantations and its comparison with an old-growth forest in northeast China. Chin. Geogr. Sci. 26, 10–21 (2016). https://doi.org/10.1007/s11769-015-0772-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-015-0772-z

Keywords

Navigation