Skip to main content
Log in

Spatio-temporal Distributions of Tropospheric NO2 over oases in Taklimakan Desert, China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Soil biogenic NO emission is one of the most important sources of atmospheric nitrogen oxides (NOx) worldwide. However, the estimation of soil source, especially in arid areas presents large uncertainties because of the substantial lack of measurements. In this study, we selected the Ruoqiang oases on the southeastern edge of the Taklimakan Desert, China as the study area and applied Ozone Monitoring Instrument (OMI) NO2 retrievals (DOMINO v2.0, 2005–2011) to investigate the spatial distribution and seasonal variations in tropospheric NO2 vertical column density (VCD). High NO2 VCDs were observed over the oases (farmlands and natural vegetation), with the highest value obtained during summer, and lowest during winter. Pulses were observed during spring. We conducted in-situ measurements in June 2011 in Milan oasis and employed ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) instruments to validate satellite NO2 retrievals. The findings are as follows: 1) in the study area soil biogenic NO emission is the dominant source of tropospheric NO2; 2) oases (farmlands) are hotspots of tropospheric NO2, and a higher increase in tropospheric NO2 is found in oases from winter to summer; and 3) enhancement of soil biogenic NO emission due to soil managements is predictable. Given the rapid agricultural development in the southern Uygur Autonomous Region of Xinjiang, researches on soil biogenic NO emission and increase in tropospheric NOx should be given more importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boersma K F, Eskes H J, Dirksen R J et al., 2011. An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument. Atmospheric Chemistry and Physics, 4(26): 1905–1928. doi: 10.5194/amt-4-1905-2011

    Google Scholar 

  • Boersma K F, Eskes H J, Veefkind J P et al., 2007. Near-real time retrieval of tropospheric NO2 from OMI. Atmospheric Chemistry and Physics, 7(8): 2103–2118. doi: 10.5194/acp-7-2103-2007

    Article  Google Scholar 

  • Bouwman A F, Bouman L J M, Batjes N H, 2002a. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochemical Cycles, 16(4): 1058. doi: 10.1029/2001GB001811

    Google Scholar 

  • Bouwman A F, Bouman L J M, Batjes N H, 2002b. Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles, 16(4): 1080. doi: 10.1029/2001GB001812

    Google Scholar 

  • Chameides W, Fehsenfeld F, Rodgers M O et al., 1992. Ozone precursor relationships in the ambient atmosphere. Journal of Geophysical Research, 92(D5): 6037–6055. doi: 10.1029/91JD03014

    Article  Google Scholar 

  • Chen D, Zhou B, Beirle S et al., 2009. Tropospheric NO2 column densities deduced from zenith-sky DOAS measurements in Shanghai, China, and their application to satellite validation. Atmospheric Chemistry and Physics, 9(3): 3641–3662. doi: 10.5194/acp-9-3641-2009

    Article  Google Scholar 

  • Davidson E A, 1992. Pulses of nitric oxide and nitrous flux following wetting of dry soil: An assessment of probable sources and importance relative annual fluxes. Ecological Bulletins, 42: 149–155.

    Google Scholar 

  • Denman K L, Brasseur G P, Chidthaisong A et al., 2007. Couplings Between Changes in the Climate System and Biogeochemistry, in Climate Change 2007: The Physical Science Basis. Cambridge, U.K.: Cambridge University Press, 499–587.

    Google Scholar 

  • Fayt C, van Roozendael M, 2001. WinDOAS 2.1 Software User Manual. Available at: http://www.oma.be/BIRA-IASB.Molecules/BrO/WinDOAS-SUM-210b.pdf.

    Google Scholar 

  • Feig G T, Mamtimin B, Meixner F X, 2008. Soil biogenic emissions of nitric oxide from a semi-arid savanna in South Africa. Biogeosciences, 5(4): 1723–1738. doi: 10.5194/bgd-5-2795-2008

    Article  Google Scholar 

  • Galbally W, Kirstine C P, Meyer Y P et al., 2008. Soilatmosphere trace gas exchange in semiarid and arid zones. Journal of Environmental Quality, 37(2): 599–607. doi: 10.2134/jeq2006.0445

    Article  Google Scholar 

  • Galloway J N, Dentener F J, Capone D G et al., 2004. Nitrogen cycles: Past, present and future. Biogeochemistry, 70(2): 153–226. doi: 10.1007/s10533-004-0370-0

    Article  Google Scholar 

  • Ghude S D, Lal D M, Beig G et al., 2010. Rain-Induced soil NOx emission from India during the Onset of the Summer Monsoon: A satellite perspective. Journal of Geophysical Research, 115(D16): D16304. doi: 10.1029/2009JD013367

    Article  Google Scholar 

  • Gu Huaxiang, He Jianmin, 2004. The existing problem of sustainable development strategy in Xinjiang and some solutions. Journal of Xinjiang Normal University (Social Sciences), 25(1): 69–77. (in Chinese)

    Google Scholar 

  • Harrison P, Pearce F, 2000. Deserts and Drylands, AAAS Atlas of Population and Environment. Berkeley, U.S.A.: University of California Press, 3–17.

    Google Scholar 

  • Hartley A E, Schlesinger W H, 2000. Environmental controls on nitric oxide emission from northern Chihuahua desert soils. Biogeochemistry, 50(3): 2790–3000. doi: 10.1023/A:1006377832207

    Article  Google Scholar 

  • Hudman R C, Russel A R, Valin L C et al., 2010. Interannual variability in soil nitric oxide emissions over the United States as viewed from space. Atmospheric Chemistry and Physics Discussions, 10(20): 13029–13053. doi: 10.5194/acp-10-9943-2010

    Article  Google Scholar 

  • Jaegle L, Martin R V, Chance K et al., 2004. Satellite mapping of rain-induced nitric oxide emissions from soils. Journal of Geophysics Research, 109(D21): D21310. doi: 10.1029/2004JD004787

    Article  Google Scholar 

  • Jaegle L, Steinberger L, Martin R V et al., 2005. Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Fraday Discussion, 130: 407–423. doi: 10.1039/B502128F

    Article  Google Scholar 

  • Koeppen W, 1931. Grundriss der Klimakunde. Berlin/Leipzig, Germany: Gruyter Verlag. (in German)

    Google Scholar 

  • Levelt P F, van den Oord G H J, Dobber M R et al., 2006. The Ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1093–1101. doi: 10.1109/TGRS.2006.872333

    Article  Google Scholar 

  • Lin J T, 2012. Satellite constraint for emissions of nitrogen oxides from anthropogenic, lightning and soil sources over East China on a high-resolution grid. Atmospheric Chemistry and Physics, 12(6): 2881–2898. doi: 10.5194/acp-12-2881-2012

    Article  Google Scholar 

  • Ma Huilan, Zhou Chuanbao, 2012. The analysis of environmental impacts of chemical fertilizer in Tarim River Basin. Chinese Agricultural Science Bulletin, 28(35): 244–250. (in Chinese)

    Google Scholar 

  • Ma J, Richter A, Burrows J P et al., 2006. Comparison of model-simulated tropospheric NO2 over China with GOMEsatellite data. Atmospheric Environment, 40(4): 593–604. doi: 10.1016/j.atmosenv.2005.09.029

    Article  Google Scholar 

  • Mamtimin B, 2005. The Climate Conditions in Arid and Semiarid Regions and Possibilities of Sustainable Agricultural Utilization. Mainz, Germany: Johannes Gutenberg-University, 57–74.

    Google Scholar 

  • Meixner F X, Yang W X, 2006. Biogenic Emissions of Nitric Oxide and Nitrous Oxide from Arid and Semi-arid Land, in Dryland Ecohydrology. Dordrecht, Netherlands: Springer, 21–34.

    Google Scholar 

  • Platt U, Stutz J, 2008. Differential Optical Absorption Spectroscopy, Principles and Applications. Berlin, Germany: Springer, 23–338.

    Google Scholar 

  • Scholes M C, Martin R, Scholes R J et al., 1997. NO and N2O emissions from savanna soils following the first simulated rains of the season. Nutrient Cycling in Agroecosystems, 48(1–2): 115–122. doi: 10.1023/A:1009781420199

    Article  Google Scholar 

  • Shaiganfar R, Beirle S, Sharmar M et al., 2011. Estimation of NOx emissions from Delhi using Car MAX-DOAS observations and comparison with OMI satellite data. Atmospheric Chemistry and Physics, 11(21): 10871–10887. doi: 10.5194/acp-11-10871-2011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Qi.

Additional information

Foundation item: Under the auspices of German Research Foundation and Max Planck Society (No. MA 4798/1-1), National Natural Science Foundation of China (No. 31070384)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y. Spatio-temporal Distributions of Tropospheric NO2 over oases in Taklimakan Desert, China. Chin. Geogr. Sci. 25, 561–568 (2015). https://doi.org/10.1007/s11769-014-0696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-014-0696-z

Keywords

Navigation