Skip to main content
Log in

Land use effects on soil organic carbon, microbial biomass and microbial activity in Changbai Mountains of Northeast China

Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Mountains of Northeast China is meager. Soil carbon content, microbial biomass carbon (MBC), basal respiration and soil carbon mineralization were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest (NF); spruce plantation (SP) established following clear-cutting of NF; cropland (CL); ginseng farmland (GF) previously under NF; and a five-year Mongolian oak young forest (YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicating low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineralized carbon and potentially mineralized carbon (C 0) in NF were significantly higher than those in CL and GF, while no significant difference was observed between NF and SP. In addition, YF had higher values of C 0 and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land (CL and GF) uses and plantation may lead to a reduction in soil nutrients (SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez R, Alvarez C, 2000. Soil organic matter pools and their associations with carbon mineralization kinetics. Soil Science Society of America Journal, 64(1): 184–189. doi: 10.2136/sssaj2000.641184x

    Article  Google Scholar 

  • An Xiumin, Wang Xiuquan, Liu Zhaojuan et al., 1997. Studies advances on the cultivated ginseng using old ginseng soil. Journal of Jilin Agricultural University, 19(supp.1): 89–92. (in Chinese)

    Google Scholar 

  • Anderson T H, Domsch K H, 1990. Application of ecophysiological quotients (qCO2 and Qd) on microbial biomasses from soils of different cropping histories. Soil Biology & Biochemistry, 22(2): 251–255. doi: 10.1016/0038-0717(90)90094-G

    Article  Google Scholar 

  • Bottner P, 1985. Response of microbial biomass to alternate moist and dry conditions in a soil incubated with C-14-labeled and N-15-labelled plant-material. Soil Biology & Biochemistry, 17(3): 329–337. doi: 10.1016/0038-0717(85)90070-7

    Article  Google Scholar 

  • Burton J, Chen C, Xu Z et al., 2010. Soil microbial biomass, activity and community composition in adjacent native and plantation forests of subtropical Australia. Journal of Soils and Sediments, 10(7): 1267–1277. doi: 10.1007/s11368-010-0238-y

    Article  Google Scholar 

  • Chen C R, Xu Z H, Mathers N J, 2004. Soil carbon pools in adjacent natural and plantation forests of subtropical Australia. Soil Science Society of America Journal, 68(1): 282–291. doi: 10.2136/sssaj2004.2820

    Article  Google Scholar 

  • Chen D D, Zhang S H, Dong S K et al., 2010. Effect of land-use on soil nutrients and microbial biomass of an alpine region on the northeastern Tibetan Plateau, China. Land Degradation & Development, 21(5): 446–452. doi: 10.1002/ldr.990

    Google Scholar 

  • Christensen B T, 2000. Organic Matter in Soil—Structure, Function and Turn Over. Tjele: Danish Institute of Agricultural Scienses, Research Center Foulum, 95.

    Google Scholar 

  • Cookson W R, Osman M, Marschner P et al., 2007. Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biology & Biochemistry, 39(3): 744–756. doi: 10.1016/j.soilbio.2006.09.022

    Article  Google Scholar 

  • Devi N B, Yadava P S, 2006. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Applied Soil Ecology, 31(3): 220–227. doi: 10.1016/j.apsoil.2005.05.005

    Article  Google Scholar 

  • Diazravina M, Acea M J, Carballas T, 1995. Seasonal-changes in microbial biomass and nutrient flush in forest soils. Biology and Fertility of Soils, 19(2): 220–226. doi: 10.1007/BF00336163

    Article  Google Scholar 

  • Gao Junqin, Ouyang Hua, Lei Guangchun et al., 2011. Effects of temperature, soil moisture, soil type and their interactions on soil carbon mineralization in Zoigê Alpine wetland, Qinghai-Tibet Plateau. Chinese Geographical Science, 21(1): 27–35. doi: 10.1007/s11769-011-0439-3

    Article  Google Scholar 

  • Hofman J, Buchlebova J, Dusek L et al., 2003. Novel approach to monitoring of the soil biological quality. Environment International, 28(8): 771–778. doi: 10.1016/S0160-4120(02)00068-5

    Article  Google Scholar 

  • Huang J, Song C, 2010. Effects of land use on soil water soluble organic C and microbial biomass C concentrations in the Sanjiang Plain in Northeast China. Acta Agriculturae Scandinavica, Section B—Plant Soil Science, 60(2): 182–188. doi: 10.1080/09064710802680387

    Google Scholar 

  • Huang Z, Xu Z, Chen C et al., 2008. Changes in soil carbon during the establishment of a hardwood plantation in subtropical Australia. Forest Ecology and Management, 254(1): 46–55. doi: 10.1016/j.foreco.2007.07.021

    Article  Google Scholar 

  • Insam H, Haselwandter K, 1989. Metabolic quotient of the soil microflora in relation to plant succession. Oecologia, 79(2): 174–178. doi: 10.1007/BF00388474

    Article  Google Scholar 

  • Kasel S, Bennett L T, 2007. Land-use history, forest conversion, and soil organic carbon in pine plantations and native forests of south eastern Australia. Geoderma, 137(3): 401–413. doi: 10.1016/j.geoderma.2006.09.002

    Article  Google Scholar 

  • Landgraf D, Klose S, 2002. Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different mana gement systems. Journal of Plant Nutrition and Soil Science, 165(1): 9–16. doi: 10.1002/1522-2624(200202)165:1<9::AID-JPLN9>3.0.CO;2-O

    Article  Google Scholar 

  • Lin Qimei, Wu Yuguang, Liu Huanlong, 1999. Modification of fumigation extraction method for measuring soil microbial biomass carbon. Chinese Journal of Ecology, 18(2): 63–66. (in Chinese)

    Google Scholar 

  • Lu Rukun, 2000. Soil Agrochemistry and Analytical Methods. Beijing: Chinese Agricultural Science and Technology Press, 34–47. (in Chinese)

    Google Scholar 

  • Moscatelli M C, Di Tizio A, Marinari S et al., 2007. Microbial indicators related to soil carbon in Mediterranean land use systems. Soil & Tillage Research, 97(1): 51–59. doi: 10.1016/j.still.2007.08.007

    Article  Google Scholar 

  • Motavalli P, Discekici H, Kuhn J, 2000. The impact of land clearing and agricultural practices on soil organic C fractions and CO2 efflux in the northern Guam aquifer. Agriculture, Ecosystems & Environment, 79(1): 17–27. doi: 10.1016/S0167-8809(99)00139-5

    Article  Google Scholar 

  • Nsabimana D, Haynes R J, Wallis F M, 2004. Size, activity and catabolic diversity of the soil microbial biomass as affected by land use. Applied Soil Ecology, 26(2): 81–92. doi: 10.1016/j.apsoil.2003.12.005

    Article  Google Scholar 

  • Pandey C B, Singh G B, Singh S K et al., 2010. Soil nitrogen and microbial biomass carbon dynamics in native forests and derived agricultural land uses in a humid tropical climate of India. Plant and Soil, 333(1–2): 453–467. doi: 10.1007/s11104-010-0362-x

    Article  Google Scholar 

  • Raiesi F, 2006. Carbon and N mineralization as affected by soil cultivation and crop residue in a calcareous wetland ecosystem in Central Iran. Agriculture, Ecosystems & Environment, 112(1): 13–20. doi: 10.1016/j.agee.2005.07.002

    Article  Google Scholar 

  • Saggar S, Yeates G W, Shepherd T G, 2001. Cultivation effects on soil biological properties, microfauna and organic matter dynamics in Eutric Gleysol and Gleyic Luvisol soils in New Zealand. Soil & Tillage Research, 58(1): 55–68. doi: 10.1016/S0167-1987(00)00184-7

    Article  Google Scholar 

  • Shi F C, Li J J, Wang S Q, 2008. Soil organic carbon, nitrogen and microbial properties in contrasting forest ecosystems of North-east China under different regeneration scenarios. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 58(1): 1–10. doi: 10.1080/09064710601065970

    Google Scholar 

  • Shi Z, Li Y, Wang S et al., 2009. Accelerated soil CO2 efflux after conversion from secondary oak forest to pine plantation in southeastern China. Ecological Research, 24(6): 1257–1265. doi: 10.1007/s11284-009-0609-2

    Article  Google Scholar 

  • Talkner U, Jansen M, Beese F O, 2009. Soil phosphorus status and turnover in central-European beech forest ecosystems with differing tree species diversity. European Journal of Soil Science, 60(3): 338–346. doi: 10.1111/j.1365-2389.2008.01117.x

    Article  Google Scholar 

  • Vance E D, Brookes P C, Jenkinson D S, 1987. An extraction method for measuring soil microbial biomass-C. Soil Biology & Biochemistry, 19(6): 703–707. doi: 10.1016/0038-0717(87)90052-6

    Article  Google Scholar 

  • Wang C M, Ouyang H, Shao B, 2006. Soil carbon changes following afforestation with Olga Bay larch (Larix olgensis Henry) in northeastern China. Journal of Integrative Plant Biology, 48(5): 503–512. doi: 10.1111/j.1744-7909.2006.00264.x

    Article  Google Scholar 

  • Wang Q, Wang S, Fan B et al., 2007. Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in South China: Effect of planting conifers with broadleaved species. Plant and Soil, 297(1): 201–211. doi: 10.1007/s11104-007-9333-2

    Article  Google Scholar 

  • Wang Q, Wang S, Xu G et al., 2010. Conversion of secondary broadleaved forest into Chinese fir plantation alters litter production and potential nutrient returns. Plant Ecology, 209(2): 269–278. doi: 10.1007/s11258-010-9719-8

    Article  Google Scholar 

  • Wardle D, 1992. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews, 67(3): 321–358. doi: 10.1111/j.1469-185X.1992.tb00728.x

    Article  Google Scholar 

  • Wu Jianguo, Zhang Xiaoquan, Xu Deying, 2004. The mineralization of soil organic carbon under different land uses in the Liupan Mountain forest zone. Acta Phytoecologica Sinica, 28(4): 530–538. (in Chinese)

    Google Scholar 

  • Wu Lezhi, Cai Zucong, 2012. Key variables explaining soil organic carbon content variations in croplands and non-croplands in Chinese provinces. Chinese Geographical Science, 22(3): 1–9. doi: 10.1007/s11769-012-0531-3

    Article  Google Scholar 

  • Yan Yi, Chen Limei, Yu Haiye et al., 2011. Physical properties of ginseng soil under forests. Journal of Northeast Forestry University, 39(4): 71–74. (in Chinese)

    Google Scholar 

  • Yang K, Zhu J J, Zhang M et al., 2010. Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: A comparison between natural secondary forest and larch plantation. Journal of Plant Ecology, 3(3): 175–182. doi: 10.1093/jpe/rtq022

    Article  Google Scholar 

  • Yang Y, Guo J, Chen G et al., 2009. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant and Soil, 323(1): 153–162. doi: 10.1007/s11104-009-9921-4

    Article  Google Scholar 

  • Ye R, Wright A L, Inglett K et al., 2009. Land-use effects on soil nutrient cycling and microbial community dynamics in the everglades agricultural area, Florida. Communications in Soil Science and Plant Analysis, 40: 2725–2742. doi: 10.1080/00103620903173772

    Article  Google Scholar 

  • Zhang J, Wang S L, Feng Z W, 2009. Carbon mineralization of soils from native evergreen broadleaf forest and three plantations in mid-subtropic China. Communications in Soil Science and Plant Analysis, 40(11–12): 1964–1982. doi: 10.1080/00103620902896795

    Article  Google Scholar 

  • Zhang J B, Song C C, Yang W Y, 2007. Tillage effects on soil carbon fractions in the Sanjiang Plain, Northeast China. Soil & Tillage Research, 93(1): 102–108. doi: 10.1016/j.still.2006.03.014

    Article  Google Scholar 

  • Zhao J Z, Li Y, Wang D Y et al., 2011. Tourism-induced deforestation outside Changbai Mountain Biosphere Reserve, Northeast China. Annals of Forest Science, 68(5): 935–941. doi: 10.1007/s13595-011-0099-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Dai.

Additional information

Foundation item: Under the auspices of National Key Technology Research and Development Program of China (No. 2012BAD22B04), CFERN & GENE Award Funds on Ecological Paper, National Natural Science Foundation of China (No. 30900208)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, X., Wang, Q., Zhou, W. et al. Land use effects on soil organic carbon, microbial biomass and microbial activity in Changbai Mountains of Northeast China. Chin. Geogr. Sci. 24, 297–306 (2014). https://doi.org/10.1007/s11769-014-0670-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-014-0670-9

Keywords

Navigation