Skip to main content
Log in

Global blow-up for a heat system with localized sources and absorptions

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

In this paper there are established the global existence and finite time blow-up results of nonnegative solution for the following parabolic system

$$\begin{array}{*{20}c} {u_t = \Delta u + v^p (x_0 ,t) - au^r , x \in \Omega , t > 0,} \\ {v_t = \Delta v + u^q (x_0 ,t) - bv^s , x \in \Omega , t > 0,} \\ \end{array} $$

subject to homogeneous Dirichlet conditions and nonnegative initial data, where x 0Ω is a fixed point, p, q, r, s ≥ 1 and a, b > 0 are constants. In the situation when nonnegative solution (u, υ) of the above problem blows up in finite time, it is showed that the blow-up is global and this differs from the local sources case. Moreover, for the special case r = s = 1,

$$\begin{array}{*{20}c} {\mathop {\lim }\limits_{t \to T*} (T* - t)^{\frac{{p + 1}}{{pq - 1}}} u(x,t) = (p + 1)^{\frac{1}{{pq - 1}}} (q + 1)^{\frac{p}{{pq - 1}}} (pq - 1)^{ - \frac{{p + 1}}{{pq - 1}}} ,} \\ {\mathop {\lim }\limits_{t \to T*} (T* - t)^{\frac{{q + 1}}{{pq - 1}}} v(x,t) = (p + 1)^{\frac{q}{{pq - 1}}} (q + 1)^{\frac{1}{{pq - 1}}} (pq - 1)^{ - \frac{{q + 1}}{{pq - 1}}} ,} \\ \end{array} $$

are obtained uniformly on compact subsets of Ω, where T* is the blow-up time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bimpong Bota K, Ortoleva P, Ross J. Far from equilibrium phenomena at local sites of reactions, J Chem Phys, 1974, 60: 3124–3133.

    Article  Google Scholar 

  2. Ortoleva P, Ross J. Local structures in chemical reactions with heterogeneous catalysis, J Chem Phys, 1972, 56: 4397–4400.

    Article  Google Scholar 

  3. Bebernes J, Eberly D. Mathematical Problems from Combustion Theory, New York: Springer-Verlag, 1989.

    MATH  Google Scholar 

  4. Cantrell R S, Cosner C. Diffusive logistic equation with indefinite weights: population models in disrupted environments II, SIAM J Math Anal, 1991, 22: 1043–1064.

    Article  MATH  MathSciNet  Google Scholar 

  5. Pao C V. Nonlinear Parabolic and Elliptic Equations, New York: Plenum Press, 1992.

    MATH  Google Scholar 

  6. Bebernes J, Lacey A. Finite time blow-up for a particular parabolic system, SIAM J Math Anal, 1990, 21: 1415–1425.

    Article  MATH  MathSciNet  Google Scholar 

  7. Escobedo M, Herrero M A. Boundedness and blow-up for a semilinear reaction diffusion system, J Differential Equations, 1991, 89: 176–202.

    Article  MATH  MathSciNet  Google Scholar 

  8. Escobedo M, Herrero M A. A semilinear parabolic system in a bounded domain, Ann Mat Pura Appl, 1993(4): 315–336.

    Article  MathSciNet  Google Scholar 

  9. Rossi J D, Wolanski N. Blow-up vs. global existence for a semilinear reaction-diffusion system in a bounded domain, Comm Partial Differential Equations, 1995, 20(1): 1991–2004.

    MATH  MathSciNet  Google Scholar 

  10. Wang M X. Global existence and finite time blow-up for a reaction-diffusion system, Z Angew Math Phys, 2000, 51: 160–167.

    Article  MATH  MathSciNet  Google Scholar 

  11. Wang M X. Blow-up rate estimates for semilinear parabolic systems, J Differential Equations, 2001, 170: 317–324.

    Article  MATH  MathSciNet  Google Scholar 

  12. Bedjaoui N, Souplet P. Critical blowup exponents for a system of reaction-diffusion equations with absorption, Z Angew Math Phys, 2002, 53: 197–210.

    Article  MATH  MathSciNet  Google Scholar 

  13. Wang M X, Wang Y M. Blow-up properties of positive solutions for nonlocal reaction diffusion problems, Math Methods Appl Sci, 1996, 19: 1141–1156.

    Article  MATH  MathSciNet  Google Scholar 

  14. Souplet P. Blow-up in nonlocal reaction-diffusion equations. SIAM J Math Anal, 1998, 29(6): 1301–1334.

    Article  MATH  MathSciNet  Google Scholar 

  15. Souplet P. Uniform blow-up profile and boundary behavior for diffusion equations with nonlocal nonlinear source, J Differential Equations, 1999, 153: 374–406.

    Article  MATH  MathSciNet  Google Scholar 

  16. Pedersen M, Lin Z G. Coupled diffusion systems with localized nonlinear reactions, Comput Math Appl, 2001, 42: 807–816.

    Article  MATH  MathSciNet  Google Scholar 

  17. Li F C, Xue G H. Asymptotic behavior of the solution for a diffusive system coupled with localized sources, Dynam Contin Discrete Impuls Systems Ser A, Math Anal, 2005, 12(6): 719–730.

    MATH  MathSciNet  Google Scholar 

  18. Deng W B, Li Y X, Xie C H. Semilinear reaction diffusion systems with nonlocal sources, Math Comput Modelling, 2003, 37(9–10), 937–943.

    Article  MATH  MathSciNet  Google Scholar 

  19. Friedman A. Partial Differential Equations of Parabolic Type, New Jersey: Prentice-Hall, Inc, 1964.

    MATH  Google Scholar 

  20. Friedman A, Mcleod J B. Blow-up of positive solutions of semilinear heat equation, Indiana Univ Math, J, 1985, 34: 425–447.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study is supported partially by the research program of natural science of universities in Jiangsu province (05KJB110144 and 05KJB110063) and by the natural science foundation of Yancheng normal institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y. Global blow-up for a heat system with localized sources and absorptions. Appl. Math. Chin. Univ. 22, 213–225 (2007). https://doi.org/10.1007/s11766-007-0210-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-007-0210-9

MR Subject Classification

Keywords

Navigation